Skip to main content

Advertisement

Log in

Dipyrrin-based complexes for solution-processed organic solar cells

  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

Three dipyrrin-containing metal complexes and a boron dipyrromethene(BODIPY)-containing complex were designed and synthesized. The photophysical properties, electrochemical behaviours and photovoltaic performance were extensively investigated. Density functional theory calculations were also performed on those complexes. These complexes, together with electron-acceptor [6,6]-phenyl-C71-butyric acid methyl ester, were utilized for the fabrication of solution-processed bulk heterojunction solar cells as the electron-donor materials. The more efficient electron acceptor BODIPY segment renders a lower energy gap and a relatively better photovoltaic conversion efficiency of 0.58%. These results prove that BODIPY segment has a great potential for constructing efficient organic solar cell materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu G., Gao J., Hummelen J. C., Wudl F., Heeger A. J., Science, 1995, 270, 1789

    Article  CAS  Google Scholar 

  2. Turner J. A., Science, 1999, 285, 687

    Article  CAS  Google Scholar 

  3. Chen J., Cao Y., Accounts of Chemical Research, 2009, 42, 1709

    Article  CAS  Google Scholar 

  4. Cheng Y. J., Yang S. H., Hsu C. S., Chemical Reviews, 2009, 109, 5868

    Article  CAS  Google Scholar 

  5. Dennler G., Scharber M. C., Brabec C. J., Advanced Materials, 2009, 21, 1323

    Article  CAS  Google Scholar 

  6. Beaujuge P. M., Fréchet J. M. J., Journal of the American Chemical Society, 2011, 133, 20009

    Article  CAS  Google Scholar 

  7. Facchetti A., Chemistry of Materials, 2011, 23, 733

    Article  CAS  Google Scholar 

  8. Fitzner R., Mena-Osteritz E., Mishra A., Schulz G., Reinold E., Weil M., Körner C., Ziehlke H., Elschner C., Leo K., Riede M., Pfeiffer M., Uhrich C., Bäuerle P., Journal of the American Chemical Society, 2012, 134, 11064

    Article  CAS  Google Scholar 

  9. Li Y., Accounts of Chemical Research, 2012, 45, 723

    Article  CAS  Google Scholar 

  10. Lin Y., Li Y., Zhan X., Chemical Society Reviews, 2012, 41, 4245

    Article  CAS  Google Scholar 

  11. Mishra A., Bäuerle P., Angewandte Chemie International Edition, 2012, 51, 2020

    Article  CAS  Google Scholar 

  12. Walker B., Kim C., Nguyen T. Q., Chemistry of Materials, 2011, 23, 470

    Article  CAS  Google Scholar 

  13. He Z., Zhong C., Huang X., Wong W. Y., Wu H., Chen L., Su S., Cao Y., Advanced Materials, 2011, 23, 4636

    Article  CAS  Google Scholar 

  14. Bura T., Leclerc N., Fall S., Lévêque P., Heiser T., Retailleau P., Rihn S., Mirloup A., Ziessel R., Journal of the American Chemical Society, 2012, 134, 17404

    Article  CAS  Google Scholar 

  15. Coffin R. C., Peet J., Rogers J., Bazan G. C., Nat. Chem., 2009, 1, 657

    Article  CAS  Google Scholar 

  16. Hou J., Chen H. Y., Zhang S., Li G., Yang Y., Journal of the American Chemical Society, 2008, 130, 16144

    Article  CAS  Google Scholar 

  17. Lee O. P., Yiu A. T., Beaujuge P. M., Woo C. H., Holcombe T. W., Millstone J. E., Douglas J. D., Chen M. S., Fréchet J. M. J., Advanced Materials, 2011, 23, 5359

    Article  CAS  Google Scholar 

  18. Lin Y., Zhang Z. G., Li Y., Zhu D., Zhan X., Journal of Materials Chemistry A, 2013, 1, 5128

    Article  CAS  Google Scholar 

  19. Liu Y., Wan X., Wang F., Zhou J., Long G., Tian J., You J., Yang Y., Chen Y., Advanced Energy Materials, 2011, 1, 771

    Article  CAS  Google Scholar 

  20. Loser S., Bruns C. J., Miyauchi H., Ortiz R. P., Facchetti A., Stupp S. I., Marks T. J., Journal of the American Chemical Society, 2011, 133, 8142

    Article  CAS  Google Scholar 

  21. Mühlbacher D., Scharber M., Morana M., Zhu Z., Waller D., Gaudiana R., Brabec C., Advanced Materials, 2006, 18, 2884

    Article  Google Scholar 

  22. Peet J., Kim J. Y., Coates N. E., Ma W. L., Moses D., Heeger A. J., Bazan G. C., Nat. Mater., 2007, 6, 497

    Article  CAS  Google Scholar 

  23. Sahu D., Tsai C. H., Wei H. Y., Ho K. C., Chang F. C., Chu C. W., Journal of Materials Chemistry, 2012, 22, 7945

    Article  CAS  Google Scholar 

  24. Shang H., Fan H., Liu Y., Hu W., Li Y., Zhan X., Advanced Materials, 2011, 23, 1554

    Article  CAS  Google Scholar 

  25. Shi Q., Cheng P., Li Y., Zhan X., Advanced Energy Materials, 2012, 2, 63

    Article  CAS  Google Scholar 

  26. Sun Y., Welch G. C., Leong W. L., Takacs C. J., Bazan G. C., Heeger A. J., Nat. Mater., 2012, 11, 44

    Article  CAS  Google Scholar 

  27. Walker B., Tamayo A. B., Dang X. D., Zalar P., Seo J. H., Garcia A., Tantiwiwat M., Nguyen T. Q., Advanced Functional Materials, 2009, 19, 3063

    Article  CAS  Google Scholar 

  28. Zhou J., Wan X., Liu Y., Long G., Wang F., Li Z., Zuo Y., Li C., Chen Y., Chemistry of Materials, 2011, 23, 4666

    Article  CAS  Google Scholar 

  29. Zhou J., Wan X., Liu Y., Zuo Y., Li Z., He G., Long G., Ni W., Li C., Su X., Chen Y., Journal of the American Chemical Society, 2012, 134, 16345

    Article  CAS  Google Scholar 

  30. Kyaw A. K. K., Wang D. H., Gupta V., Leong W. L., Ke L., Bazan G. C., Heeger A. J., ACS Nano, 2013, 7, 4569

    Article  CAS  Google Scholar 

  31. Fan H., Shang H., Li Y., Zhan X., Applied Physics Letters, 2010, 97, 133302

    Google Scholar 

  32. Li W., Du C., Li F., Zhou Y., Fahlman M., Bo Z., Zhang F., Chemistry of Materials, 2009, 21, 5327

    Article  CAS  Google Scholar 

  33. Mikroyannidis J. A., Stylianakis M. M., Balraju P., Suresh P., Sharma G. D., ACS Applied Materials & Interfaces, 2009, 1, 1711

    Article  CAS  Google Scholar 

  34. Ning Z., Tian H., Chemical Communications, 2009, 5483

    Google Scholar 

  35. Roquet S., Cravino A., Leriche P., Alévêque O., Frère P., Roncali J., Journal of the American Chemical Society, 2006, 128, 3459

    Article  CAS  Google Scholar 

  36. Chen J., Wang M., Chem. Res. Chinese Universities, 2013, 29(3), 584

    Article  CAS  Google Scholar 

  37. Zhou H., Yang L., You W., Macromolecules, 2012, 45, 607

    Article  CAS  Google Scholar 

  38. Lin H. Y., Huang W. C., Chen Y. C., Chou H. H., Hsu C. Y., Lin J. T., Lin H. W., Chemical Communications, 2012, 48, 8913

    Article  CAS  Google Scholar 

  39. Rousseau T., Cravino A., Bura T., Ulrich G., Ziessel R., Roncali J., Chemical Communications, 2009, 1673

    Google Scholar 

  40. Halper S. R., Malachowski M. R., Delaney H. M., Cohen S. M., Inorganic Chemistry, 2004, 43, 1242

    Article  CAS  Google Scholar 

  41. Hehre W. J., Ditchfield R., Pople J. A., J. Chem. Phys., 1972, 56, 2257

    Article  CAS  Google Scholar 

  42. Maeda H., Hasegawa M., Hashimoto T., Kakimoto T., Nishio S., Nakanishi T., Journal of the American Chemical Society, 2006, 128, 10024

    Article  CAS  Google Scholar 

  43. Sutton J. M., Rogerson E., Wilson C. J., Sparke A. E., Archibald S. J., Boyle R. W., Chemical Communications, 2004, 1328

    Google Scholar 

  44. Halper S. R., Cohen S. M., Angewandte Chemie International Edition, 2004, 43, 2385

    Article  CAS  Google Scholar 

  45. Murphy D. L., Malachowski M. R., Campana C. F., Cohen S. M., Chemical Communications, 2005, 5506

    Google Scholar 

  46. Becke A. D., J. Chem. Phys., 1993, 98, 5648

    Article  CAS  Google Scholar 

  47. Lee C., Yang W., Parr R. G., Physical Review B, 1988, 37, 785

    Article  CAS  Google Scholar 

  48. Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Mennucci B., Petersson G. A., Nakatsuji H., Caricato M., Li X., Hratchian H. P., Izmaylov A. F., Bloino J., Zheng G., Sonnenberg J. L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J. A. Jr., Peralta J. E., Ogliaro F., Bearpark M. J., Heyd J., Brothers E. N., Kudin K. N., Staroverov V. N., Kobayashi R., Normand J., Raghavachari K., Rendell A. P., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Rega N., Millam N. J., Klene M., Knox J. E., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Martin R. L., Morokuma K., Zakrzewski V. G., Voth G. A., Salvador P., Dannenberg J. J., Dapprich S., Daniels A. D., Farkas Ö., Foresman J. B., Ortiz J. V., Cioslowski J., Fox D. J., Gaussian 09, Gaussian Inc., Wallingford CT 2009

    Google Scholar 

  49. Hay P. J., Wadt W. R., J. Chem. Phys., 1985, 82, 299

    Article  CAS  Google Scholar 

  50. Ditchfield R., Hehre W. J., Pople J. A., J. Chem. Phys., 1971, 54, 724

    Article  CAS  Google Scholar 

  51. Thompson B. C., Kim Y. G., Reynolds J. R., Macromolecules, 2005, 38, 5359

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Zhao.

Additional information

Supported by the National Natural Science Foundation of China(No.21403085) and the Science and Technology Development Project of Jilin Province, China(Nos.20130522009JH, 201201125).

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, L., Guan, S., Li, L. et al. Dipyrrin-based complexes for solution-processed organic solar cells. Chem. Res. Chin. Univ. 31, 801–808 (2015). https://doi.org/10.1007/s40242-015-5140-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-015-5140-0

Keywords

Navigation