Skip to main content
Log in

Synthesis of NiFe2O4 nanowires with NiO nanosheet as precursor via a topochemical solid state method

  • Published:
Chemical Research in Chinese Universities Aims and scope

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Large scale NiFe2O4 nanowires were synthesized with NiO nanosheets as precursor by means of the topochemical solid state method. The morphologies and magnetic properties of NiFe2O4 annealed at different temperatures were studied. An appropriate annealing temperature was requested to transfer NiO nanosheets and Fe ions into NiFe2O4 nanowires. In the beginning stage of synthesizing process, the shape of NiO nanosheets remained unchanged at low temperatures. And then, NiO nanosheets split into nanowires from 400 °C to 600 °C. At last they transformed into nanoparticles from 700 °C to 1000 °C. Thus, the optimized annealing temperature was selected as 600 °C because the NiFe2O4 obtained at 600 °C(N600) exhibited a maximum aspect ratio of 50 with a diameter of 20 nm and a length of 1 μm. Furthermore, N600 also displayed the largest magnetization value of 26.86 A·m2/kg and the lowest coercivity(H c) of 8914 A/m.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu P., Huang Y., Zhang X., Compos. Sci. Technol., 2015, 107, 54

    Article  CAS  Google Scholar 

  2. Gu X., Zhu W. M., Jia C. J., Zhao R., Schmidt W., Wang Y. Q., Chem. Commun., 2011, 47, 5337

    Article  CAS  Google Scholar 

  3. Chanda D., Hnát J., Paidar M., Schauer J., Bouzek K., Álvarez S. I., Arillo M. A., López M. L., Veiga M. L., Pico C., J. Power Sources, 2015, 285, 217

    Article  CAS  Google Scholar 

  4. Álvarez S. I., Arillo M. A., López M. L., Veiga M. L., Pico C., Adv. Mater., 2011, 23, 5237

    Article  Google Scholar 

  5. Jia Z. G., Wang Q., Liu J. H., Xu L. X., Zhu R. S., Colloids and Surf. A, 2013, 436, 495

    Article  CAS  Google Scholar 

  6. Wu R. C., Qu J. H., He H., Appl. Catal. B, 2004, 48, 49

    Article  CAS  Google Scholar 

  7. Zhang L., Su M. M., Guo X. J., Sep. Puri. Technol., 2008, 62, 458

    Article  Google Scholar 

  8. Sivakumar P., Ramesh R., Ramanand A., Ponnusamy S., Muthamizhchelvan C., J. Alloy Compd., 2013, 563, 6

    Article  CAS  Google Scholar 

  9. Cao X. H., Dong H. F., Meng J. H., Sun J., Solid State Sci., 2011, 13, 1804

  10. Sivakumar P., Ramesh R., Ramanand A., Ponnusamy S., Muthamizhchelvan C., Mater. Lett., 2012, 66, 314

    Article  CAS  Google Scholar 

  11. Zhang D. E., Tong Z. W., Xu G. Y., Li S. Z., Ma J. J., Solid State Sci., 2009, 11, 113

    Article  CAS  Google Scholar 

  12. Zhang J. L., Fu J. C., Tan G. G., Li F. S., Luo C. Q., Zhao J. G., Xie E. Q., Xue D. S., Zhang H. L., Nige J. M., Peng Y., Nanoscale, 2012, 4, 2754

    Article  CAS  Google Scholar 

  13. Mehri A., Seyyed-Ebrahimi S. A., Masoudpanah S. M., J. Anal. Appl. Pyrolysis, 2014, 110, 235

    Article  CAS  Google Scholar 

  14. Ji G. B., Tang S. L., Xu B. L., Gu B. X., Du Y. W., Chem. Phys. Lett., 2003, 379, 484

    Article  CAS  Google Scholar 

  15. Zhang C. Y., Shen X. Q., Zhou J. X., Jing M. X., Cao K., J. Sol-Gel Sci. Techn., 2007, 42, 95

    Article  CAS  Google Scholar 

  16. Fan H. M., Yi J. B., Yang Y., Kho K. W., Tan H. R., Shen Z. X., Ding J., Sun X. W., Olivo M. C., Feng Y. P., ACS Nano, 2009, 3, 2798

    Article  CAS  Google Scholar 

  17. Schaak R. E., Mallouk T. E., Chem. Mater., 2002, 14, 1455

    Article  CAS  Google Scholar 

  18. Ikesue A., Isao F., Kiichiro K., J. Am. Ceram. Soc., 1995, 78, 225

    Article  CAS  Google Scholar 

  19. Xu C. Y., Fu L. S., Cai X., Sun X. Y., Zhen L., Ceram. Int., 2014, 40, 8593

    Article  CAS  Google Scholar 

  20. Xiao Z., Xia Y., Ren Z. H., Liu Z. Y., Xu G., Chao C. Y., Li X., Shen G., Han G. R., J. Mater. Chem., 2012, 22, 20566

    Article  CAS  Google Scholar 

  21. Tang B., Wang G. L., Zhuo L. H., Ge J. C., Cui L. J., Inorg. Chem., 2006, 45, 5196

    Article  CAS  Google Scholar 

  22. Yan X. B., Gao F., Liu Z. T., Mater. Lett., 2013, 109, 313

    Article  CAS  Google Scholar 

  23. Yan X. B., Gao F., Liu Z. T., Ceram. Int., 2014, 40, 4927

    Article  CAS  Google Scholar 

  24. Li L. H., Deng J. X., Yu R. B., Chen J., Wang X. W., Xing X. R., Inorg. Chem., 2010, 49, 1397

    Article  CAS  Google Scholar 

  25. Hou X. Y., Feng J., Xu X. D., Zhang M. L., J. Alloy. Compd., 2010, 491, 258

    Article  CAS  Google Scholar 

  26. Qi S. Y., Feng J., Xu X. D., Wang J. P., Hou X. Y., Zhang M. L., J. Alloy. Compd., 2009, 478, 317

    Article  CAS  Google Scholar 

  27. Kensuke W., Kakimoto K., Ohsato H., J. Eur. Ceram. Soc., 2003, 23, 2535

    Article  Google Scholar 

  28. Zhang Y. H., Zeng J. T., Li G. R., Zheng L. Y., Yin Q. R., Chem. J. Chinese Universites, 2009, 30(10), 1930

    CAS  Google Scholar 

  29. Liu Q., Huang H., Lai L., Sun J., Shang T., Zhou Q., Xu Z., J. Mater. Sci., 2009, 44, 1187

    Article  CAS  Google Scholar 

  30. Shen L., Wang Y., Padhan P., Gupta A., J. Am. Chem. Soc., 2007, 129, 12374

    Article  Google Scholar 

  31. Wang J., Chen Q., Zeng C., Hou B., Adv. Mater., 2004, 16, 137

    Article  CAS  Google Scholar 

  32. Zhang Y. Q., Huang Z. B., Tang F. Q., Ren J., Solid State Commun., 2006, 138, 132

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jing Feng or Zhuangjun Fan.

Additional information

Supported by the National Natural Science Foundation of China(Nos.21301038, 51108111, 21203040), the Fundamental Research Funds for the Central Universities of China(No.HEUCF2015003) and the Natural Science Foundation of Heilongjiang Province of China(No.B201201).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, J., Hou, X., Chen, T. et al. Synthesis of NiFe2O4 nanowires with NiO nanosheet as precursor via a topochemical solid state method. Chem. Res. Chin. Univ. 31, 885–889 (2015). https://doi.org/10.1007/s40242-015-5132-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-015-5132-0

Keywords

Navigation