Skip to main content
Log in

Immobilization of transition-metal hydroxamates on polystyrene resins: Effective biomimetic heterogeneous catalysts for aerobic oxidation of ethylbenzene

  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

Salicylhydroxamic acid(SHA) was covalently grafted onto chloromethylated crosslinked polystyrene spheres(CMCPS) by the Friedel-Crafts alkylation reaction. The amount of SHA on CPS was found to be mainly dependent on the amount of Lewis acid(SnCl4) used and the reaction temperature. Under optimized conditions, the amount of SHA attached to CPS could reach up to 0.43 g/g CPS. Transition metal ions[Co(II), Cu(II), Fe(III) or Mn(II)] were then introduced into the resulting SHA-functionalized microspheres(SHA/CPS) through SHA-metal ion chelation. The obtained microspheres MSHA/CPS were explored as biomimetic catalysts for the aerobic oxidation of ethylbenzene(EB) to ethylbenzene hydroperoxide(EBHP). Among the four supported metal catalysts, FeSHA/CPS showed the highest catalytic activity and good reusability, indicating its great potential as an effective heterogeneous catalyst for the aerobic oxidation of hydrocarbons under mild conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nam N. H., Huong T. L., Dung D. T. M., Dung P. T. P., Oanh D. T. K., Park S. H., Kim K., Han B. W., Yun J., Kang J. S., Kim Y., Han S. B., J. Enzym. Inhib. Med. Chem., 2014, 29(5), 611

    Article  CAS  Google Scholar 

  2. Qin Y., Zhao X. J., Fang Y., Int. J. Gynecol. Cancer, 2014, 24(8), 1373

    Article  Google Scholar 

  3. Xu J., Franklin S. J., Whisenhun D. W. J., Raymond K. N., J. Am. Chem. Soc., 1995, 117, 7245

    Article  CAS  Google Scholar 

  4. Zeng W., Zeng G. Y., Qin S. Y., Chin. J. Org. Chem., 2003, 23(11), 1213

    CAS  Google Scholar 

  5. Jiao J., Fang H., Wang X. J., Guan P., Yuan Y. M., Xu W. F., Eur. J. Med. Chem., 2009, 44, 4470

    Article  CAS  Google Scholar 

  6. Li H. B., Qin C., Liang W., Wang L. P., Hao M. A., Jin B., Liang X. L., Qin S.Y., J. Mol. Catal., 2009, 23(1), 62

    Google Scholar 

  7. Helmick J. S., Martin K. A., Heinrich J. L., J. Am. Chem. Soc., 1991, 113, 3459

    Article  CAS  Google Scholar 

  8. Raymond K. N., Coord. Chem. Rev., 1990, 105, 135

    Article  CAS  Google Scholar 

  9. Busch D. H., Alcock N. W., Chem. Rev., 1994, 94, 585

    Article  CAS  Google Scholar 

  10. Li G. Q., Govind R., Ind. Eng. Chem. Res., 1994, 33, 755

    Article  CAS  Google Scholar 

  11. Zhang S. Y., Jiang P. P., Leng Y., Xu Y. C., Mo G. T., Bian G., Chem. J. Chinese Universities, 2013, 34(7), 1703

    CAS  Google Scholar 

  12. Mukherjee M., Ray A. R., J. Mol. Catal. A, 2007, 266(1/2), 207

    Article  CAS  Google Scholar 

  13. Han Z. J., Zhou H., Chen H. W., Dai H., J. Inorg. Chem., 1992, 8(4), 421

    CAS  Google Scholar 

  14. Yang H., Qin S. Y., Lu X. X., Zeng W., Chin. Chem. Lett., 1999, 10, 79

    CAS  Google Scholar 

  15. Li H. B., Du Y., Wei X. Y., Qin S. Y., Acta Chim. Sinica, 2002, 60(5), 886

    CAS  Google Scholar 

  16. Barlan A. U., Zhang W., Yamamoto H., Tetrahedron, 2007, 63(27), 6075

    Article  CAS  Google Scholar 

  17. Gharah N., Chattopadhyay B., Maiti S. K., Mukherjee M., Transition Met. Chem., 2010, 35(5), 531

    Article  CAS  Google Scholar 

  18. Sun B., Qin S. Y., Chem. Res. Appl.(China), 2011, 23(1), 92

    CAS  Google Scholar 

  19. Li Y. F., Gao B. J., Yu Y. L., J. Mol. Catal.(China), 2013, 27(3), 271

    CAS  Google Scholar 

  20. Wang R. X., Zhu H. L., Gao B. J., Reac. Kinet. Mech. Cat., 2011, 103, 431

    Article  CAS  Google Scholar 

  21. Barrio L., Toribio P. P., Campos-Martin J. M., Fierro J. L. G., Tetrahedron, 2004, 60, 11527

    Article  CAS  Google Scholar 

  22. Lü C. L., Gao B. J., Liu Q., Qi C. S., Colloid Polym. Sci., 2008, 286, 553

    Article  Google Scholar 

  23. Alcántara R., Canoira L., Joao P. G., Santos J. M., Vázquez I., Appl. Catal. A, 2000, 203, 259

    Article  Google Scholar 

  24. Agrawal D. R., Tandon S. G., J. Indian Chem. Soc., 1971, 48, 571

    CAS  Google Scholar 

  25. Toribio P. P., Campos-Martin J. M., Fierro J. L. G., J. Mol. Catal. A, 2005, 227, 101

    Article  CAS  Google Scholar 

  26. Lu Z. F., Zhan F. T., Qin S. Y., Modern Chemical Industry, 2000, 20(5), 32

    Google Scholar 

  27. Toribio P. P., Campos-Martin J. M., Fierro J. L. G., Appl. Catal. A, 2005, 294, 290

    Article  CAS  Google Scholar 

  28. Li H. B., Qin C., Yang W. B., Hu X. P., Qin S. Y., Chin. Chem. Lett., 2007, 18, 103

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruixin Wang.

Additional information

Supported by the National Young Scientists Fund of China(No.21307116), the Natural Science Foundation of Shanxi Province, China(No.2014011017-5), the Project for the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi Province, China(No.201504) and the Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Province, China(No.20140828).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, R., Wang, H., Wang, X. et al. Immobilization of transition-metal hydroxamates on polystyrene resins: Effective biomimetic heterogeneous catalysts for aerobic oxidation of ethylbenzene. Chem. Res. Chin. Univ. 31, 835–840 (2015). https://doi.org/10.1007/s40242-015-5072-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-015-5072-8

Keywords

Navigation