Skip to main content

Advertisement

Log in

Template synthesis and characterization of Cu2O/TiO2 coaxial nanocable for photocatalysis

  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

Coaxial nanocable consisted of p-type Cu2O nanowires and n-type TiO2 nanotubes arrays was prepared in the porous anodic aluminum oxide(AAO) template via the sol-gel method and subsequent electrodeposition method. X-ray diffraction analysis identified an anatase structure of the TiO2 nanotubes and cubic structure of the Cu2O nanowires. The obtained samples were also characterized by scanning electron microscopy(SEM), transmission electron microscopy(TEM) and energy dispersive X-ray spectroscopy(EDS). The diffrence of open circuit potential of the coaxial nanocable electrode was larger than that of the TiO2 nanotubes electrode under ultraviolet illumination, which means doping with Cu2O could improve the photovoltage effectively. Meanwhile, nanocable arrays exhibited a high activity for photodegrading Rhodamine B under Xe lamp irradiation and the photocatalysis degradation efficiency was up to 98.69% after degradation for 7 h. The enhanced photocatalytic activity could be attributed to the high migration efficiency of photoinduced electrons, which may suppress the charge recombination effectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Subarna B., Susanta K. M., Prajna P. D., Mano M., Chem. Mater., 2008, 20(21), 6784

    Article  Google Scholar 

  2. Xi Y. Y., Zhou J. Z., Guo H. H., Chem. Phys. Lett., 2005, 412(1), 60

    Article  CAS  Google Scholar 

  3. Lu X. F., Mao H., Zhang W. J., Nanotechnology, 2007, 18(2), 025604

    Article  Google Scholar 

  4. He X. Z., Quan X. Z., Zhang X., Appl. Phys. Lett., 2003, 83(9), 1689

    Article  Google Scholar 

  5. Feng Y., Yin J. H., Chen M. H., Song M. X., Su B., Lei Q. Q., Mater. Lett., 2013, 96, 113

    Article  CAS  Google Scholar 

  6. Ke C., Cai F. G., Yang F., Cheng C. H., Zhao Y., Chem. J. Chinese Universities, 2013, 34(2), 423

    CAS  Google Scholar 

  7. Zhou W., Yin Z., Du Y., Huang X., Zeng Z., Fan Z., Liu H., Wang J., Zhang H., Small, 2013, 9(1), 140

    Article  CAS  Google Scholar 

  8. Yuan J. J., Li H. D., Wang Q. L., Cheng S. H., Zhang X. K., Yu H. J., Zhu X. R., Xie Y. M., Chem. Res. Chinese Universities, 2014, 30(1), 18

    Article  CAS  Google Scholar 

  9. Tang Y. W., Chen Z. J., Jia Z. J., Zhang L. S., Li J. L., Mater. Lett., 2005, 59(4), 434

    Article  CAS  Google Scholar 

  10. Liu Y., Ji H. W., Zhou D. F., Zhu X. F., Li Z. H., Chem. J. Chinese Universities, 2014, 35(1), 19

    CAS  Google Scholar 

  11. Tan Y. W., Xue X. Y., Peng Q., Zhao H., Wang T. H., Li Y. D., Nano Letters, 2007, 7(12), 3723

    Article  CAS  Google Scholar 

  12. Zhang Z., Chen A. P., Ma L., He H. B., Li C. Z., Chem. J. Chinese Universities, 2013, 34(3), 656

    CAS  Google Scholar 

  13. Liu Y., Yu L., Wei Z. G., Pan Z. C., Zou Y. D., Xie Y. H., Chem. J. Chinese Universities, 2013, 34(2), 434

    Article  CAS  Google Scholar 

  14. Du S. S., Cheng P. F., Sun P., Wang B., Cai Y. X., Liu F. M., Zheng J., Lu G. Y., Chem. Res. Chinese Universities, 2014, 30(4), 661

    Article  CAS  Google Scholar 

  15. De Jongh P. E., Vanmaekelbergh D., Kelly J. J., Chem. Mater., 1999, 11(12), 3512

    Article  Google Scholar 

  16. Xiao H., Ai Z., Zhang L., J. Phy. Chem. C, 2009, 113(38), 16625

    Article  CAS  Google Scholar 

  17. Hao Y. Z., Sun B., Luo C., Fan L. X., Pei J., Li Y. P., Chem. J. Chinese Universities, 2014, 35(1), 127

    CAS  Google Scholar 

  18. Lin P., Chen X., Yan X., Zhang Z., Yuan H., Li P., Zhao Y., Zhang Y., Nano Research, 2014, 7(6), 860

    Article  CAS  Google Scholar 

  19. Zheng Z. K., Huang B. B., Wang Z. Y., Guo M., Qin X. Y., Zhang X. Y., J. Mater. Chem., 2011, 21(25), 9079

    Article  CAS  Google Scholar 

  20. Michikazu H., Takeshi K., Mutsuko K., Sigeru I., Kiyoaki S., Akira T., Junko N., Kazunari D., Chem. Commun., 1998, (3), 357

    Google Scholar 

  21. Nageh K. Allam, Craig A. Grimes, Mater. Lett., 2011, 65(12), 1949

    Article  Google Scholar 

  22. Zhang Y. G., Ma L. L., Li J. L., Yu Y., Environm. Sci. Technol., 2007, 41(17), 6264

    Article  CAS  Google Scholar 

  23. Hou Y., Li X. Y., Zhou X. J., Quan X., Chen G. H., Appl. Phys. Lett., 2009, 95(9), 093108

    Article  Google Scholar 

  24. Zhuang P. Q., Xiao Z. W., Zhu X. D., Electronic Components and Materials, 2011, 30(8), 35

    CAS  Google Scholar 

  25. Bessekhouad Y., Robert D., Weber J. V., Catalysis Today, 2005, 101(3), 315

    Article  CAS  Google Scholar 

  26. Kramm B., Laufer A., Reppin D., Kronenberger P., Hering A., Appl. hys. Lett., 2012, 100(9), 094102

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiguo Zhang.

Additional information

Supported by the Natural Science Foundation of Tianjin, China(No.11JCYBJC01900).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Liu, N., Lu, J. et al. Template synthesis and characterization of Cu2O/TiO2 coaxial nanocable for photocatalysis. Chem. Res. Chin. Univ. 31, 846–850 (2015). https://doi.org/10.1007/s40242-015-5019-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-015-5019-0

Keywords

Navigation