Chemical Research in Chinese Universities

, Volume 31, Issue 3, pp 352–356 | Cite as

Evaluation of oil yield of oil shale by infrared spectrometry coupled with ultrasound-assisted extraction

  • Zhenying Zhao
  • Jun LinEmail author
  • Yong Yu
  • Chuanbin Hou
  • Yuyang Sun


The oil yield of oil shale was evaluated by Fourier transform infrared(FTIR) spectrometry coupled with ultrasound-assisted extraction. The extraction conditions, including the amount of sample, extraction time and extraction temperature, were examined and optimized. Twenty-four oil shale samples were collected and divided into calibration set and prediction set randomly with a ratio of 2:1. The oil yields of all the samples were determined by the routine method(low-temperature retorting) for reference. The linear regression(LR) equations of oil yield vs. the total area of the spectrum peaks in a wavenumber range of 3100–2800 cm–1 as well as the sum of absorbance of three absorption peaks(2855, 2927 and 2955 cm–1), and the multiple linear regression(MLR) model of oil yield vs. the absorbances of the three absorption peaks were constructed with the samples in calibration set and applied to the evaluation of the oil yields of the samples in prediction set, respectively. The results show that the MLR model provides more accurate predictions than the other LR two equations. The determination coefficient(Rp 2), the root-mean-square error of prediction(RMSEP) and the residual prediction deviation(RPD) of the MLR model are 0.9616, 0.6458 and 3.6, respectively. The present method is a rapid and effective alternative to the routine low-temperature retorting method.


Oil shale Oil yield Ultrasound-assisted extraction Infrared spectroscopy Multiple linear regression 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Rattien S., Eaton D., Energy, 1976, 1, 183Google Scholar
  2. [2]
    Liu Z. J., Dong Q. S., Ye S. Q., Zhu J. W., Guo W., Li D. C., Liu R., Zhang H. L., Du J. F., Journal of Jilin University(Earth Science Edition), 2006, 36, 871Google Scholar
  3. [3]
    Altun N. E., Hiçyilmaz C., Hwang J. Y., Bagci A. S., Kök M. V., Oil Shale, 2006, 23, 216Google Scholar
  4. [4]
    Taciuk W., Eng P., Oil Shale, 2013, 30, 3CrossRefGoogle Scholar
  5. [5]
    Wang S., Jiang X. M., Han X. X., Tong J. H., Energy, 2012, 42, 224CrossRefGoogle Scholar
  6. [6]
    Han X. X., Kulaots I., Jiang X. M., Suuberg E. M., Fuel, 2014, 126, 143CrossRefGoogle Scholar
  7. [7]
    The Nigerian Economic Summit Group, NESG Policy Paper, 2013 Google Scholar
  8. [8]
    Bai Y. L., Tang H., Yan K., Oil Shale, 2011, 28, 380CrossRefGoogle Scholar
  9. [9]
    Dong Q. S., Wang L. X., Yu W. B., Liu Z. J., Zhang H. L., Hou G. F., Journal of Jilin University (Earth Science Edition), 2006, 36, 900Google Scholar
  10. [10]
    SH/T 0508-92, The Determination Method of Oil Yield in Oil Shale-Low Temperature Retorting, Petroleum and Chemical Industry Standard of the People’s Republic of China, 1992 Google Scholar
  11. [11]
    Na J. G., Im C. H., Chung S. H., Lee K. B., Fuel, 2012, 95, 132CrossRefGoogle Scholar
  12. [12]
    Sun P. C., Liu Z. J., Grataer R., Xu Y. B., Liu R., Li B. Y., Meng Q. T., Xu J. J., Oil Shale, 2013, 30, 402CrossRefGoogle Scholar
  13. [13]
    Wang Z. H., Liu J., Chen X. C., Sun Y. Y., Lin J., Spectrosc. Spect. Anal., 2012, 32, 2770Google Scholar
  14. [14]
    Adams M. J., Awaja F., Bhargava S., Grocott S., Romeo M., Fuel, 2005, 84, 1986CrossRefGoogle Scholar
  15. [15]
    Zhao Z. Y., Lin J., Zhang H. Z., Spectrosc. Spect. Anal., 2014, 34, 1707Google Scholar
  16. [16]
    Chu X. L., Molecular Spectroscopy Analytical Technology Combined with Chemometrics and Its Applications, Chemical Industry Press, Beijing, 2011, 160Google Scholar
  17. [17]
    Wu N., Sun K. L., Liu Y., Yang X. F., Li H., Chem. Res. Chinese Universiteis, 2013, 29(4), 759CrossRefGoogle Scholar
  18. [18]
    Chen X. L., Deng L. H., Wang X. F., Guan S., Chem. J. Chinese Universiteis, 2014, 35(12), 2510Google Scholar
  19. [19]
    McKelvy M. L., Britt T. R., Davis B. L., Gillie J. K., Graves F. B., Lentz L. A., Anal. Chem., 1998, 70, 119CrossRefGoogle Scholar
  20. [20]
    Zhang H. Q., Instrumental Analysis, Higher Education Press, Beijing, 2013, 139Google Scholar
  21. [21]
    Janik L. J., Forrester S. T., Rawson A., Chemom. Intell. Lab. Syst., 2009, 97, 185,187Google Scholar
  22. [22]
    Department of Environmental Protection, HJ 637-2012, Water Quality-Determination of Petroleum Oils and Animal and Vegetable Oils-Infrared Spectrophotometry, China Environmental Science Press, Beijing, 2012Google Scholar
  23. [23]
    Ramsey E. D., Sun Q. B., Zhang Z. Q., Guo W., Liu J. Y., Wu X. H., J. Environ. Sci., 2010, 22, 1462CrossRefGoogle Scholar
  24. [24]
    Soriano-Disla J. M., Janik L. J., Rossel R. A. V., Macdonald L. M., McLaughlin L. M., Appl. Spectrosc. Rev., 2013, 49, 142,147,150Google Scholar
  25. [25]
    Forrester S. T., Janik L. J., McLaughlin M. J., Soil Chem., 2013, 77, 453Google Scholar
  26. [26]
    Li Q.Y., Han X. X., Liu Q. Q., Jiang X. M., Fuel, 2014, 121, 111Google Scholar
  27. [27]
    Li J., Shanxi Electric Power, 2003, 5, 18Google Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH 2015

Authors and Affiliations

  • Zhenying Zhao
    • 1
  • Jun Lin
    • 1
    Email author
  • Yong Yu
    • 1
  • Chuanbin Hou
    • 2
  • Yuyang Sun
    • 1
  1. 1.College of Instrumentation & Electrical EngineeringJilin UniversityChangchunP. R. China
  2. 2.College of Construction EngineeringJilin UniversityChangchunP. R. China

Personalised recommendations