Skip to main content
Log in

Electronic properties of BaTiO3 (110) polar terminations

  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

The band structures, electron density differences, and surface energies of five different BaTiO3 (110) terminations were investigated by first-principles calculations. According to the calculated results of electron density differences, the bonding characteristics of these considered terminations were discussed. The computational results indicate that the BaTiO-terminated surface is metallic, while the O2-, O-, Ba- and TiO-terminated surfaces are all insulative. Furthermore, the computed surface energies suggest that for the considered terminations, the polarity compensation achieved through surface reconstruction or surface defect is more effective than by change in surface electronic structure. The defected or reconstructed terminations predominate over cleavage and construction of BaTiO3 crystal along (110) direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Perry C. H., Hall, D. B., Phys. Rev. Lett., 1965, 15, 700

    Article  CAS  Google Scholar 

  2. Ding B. F., Zhou S. Q., Chin. Phys. B, 2011, 20, 127701

    Article  CAS  Google Scholar 

  3. Zhang M., Xu Y., Hong Z., Chin. Phys. B, 2005, 14, 995

    Article  CAS  Google Scholar 

  4. Liang W. Z., Ji Y. D., Nan T. Z., Huang J., Zeng H. Z., Du H., Chen C. L., Lin Y., Chin. Phys. B, 2012, 21, 067701

    Article  CAS  Google Scholar 

  5. Scott J. F., Paz de Araujo C. A., Science, 1989, 246, 1400

    Article  CAS  Google Scholar 

  6. Otto T., Grafström S., Chaib H., Eng L. M., Appl. Phys. Lett., 2004, 84, 1168

    Article  CAS  Google Scholar 

  7. Cardona M., Phys. Rev., 1965, 140, A651

    Article  Google Scholar 

  8. Piskunov S., Heifets E., Eglitis R. I., Borstel G., Comp. Mater. Sci., 2004, 29, 165

    Article  CAS  Google Scholar 

  9. Edwards J. W., Speiser R., Johnston H. L., J. Am. Chem. Soc., 1951, 73, 2934

    Article  CAS  Google Scholar 

  10. Shimitzu T., Bando H., Aiura Y., Haruyama Y., Oka K., Nishihara Y., Jpn. J. Appl. Phys., 1995, 34, L1305

    Article  Google Scholar 

  11. Bando H., Shimitzu T., Aiura Y., Haruyama Y., Oka K., Nishihara Y., J. Vac. Sci. Technol. B, 1996, 14, 1060

    Article  CAS  Google Scholar 

  12. Hudson L. T., Kurtz R. L., Robey S. W., Phys. Rev. B, 1993, 47, 10832

    Article  CAS  Google Scholar 

  13. Cohen R. E., J. Phys. Chem. Solids, 1996, 57, 1393

    Article  CAS  Google Scholar 

  14. Heifets E., Dorfman S., Fuks D., Kotomin E., Thin Solid Films, 1997, 296, 76

    Article  CAS  Google Scholar 

  15. Padilla J., Vanderbilt D., Phys. Rev. B, 1997, 56, 1625

    Article  CAS  Google Scholar 

  16. Corà F., Catlow C. R. A., Faraday Discuss, 1999, 114, 421

    Article  Google Scholar 

  17. Tasker P. W., J. Phys. C: Solid State Phys., 1979, 12, 4977

    Article  CAS  Google Scholar 

  18. Noguera C., J. Phys.: Condens. Matter, 2000, 12, R367

    CAS  Google Scholar 

  19. Kim D. Y., Lee S. G., Park Y. K., Park S. J., Mater. Lett., 1999, 40, 146

    Article  CAS  Google Scholar 

  20. Heifets E., Kotomin E. A., Maier J., Surf. Sci., 2000, 462, 19

    Article  CAS  Google Scholar 

  21. Heifets E., Kotomin E. A., Thin Solid Films, 2000, 358, 1

    Article  CAS  Google Scholar 

  22. Xie Y., Yu H. T., Zhang G. X., Fu H. G., Sun J. Z., J. Phys. Chem. C, 2007, 111, 6343

    Article  CAS  Google Scholar 

  23. Hohenberg P., Kohn W., Phys. Rev., 1964, 136, B864

    Article  Google Scholar 

  24. Perdew J. P., Wang Y., Phys. Rev. B, 1992, 45, 13244

    Article  Google Scholar 

  25. Hamann D. R., Schlüter M., Phys. Rev. Lett., 1979, 43, 1494

    Article  CAS  Google Scholar 

  26. Monkhorst H. J., Pack J. D., Phys. Rev. B, 1976, 13, 5188

    Article  Google Scholar 

  27. Seidl A., Görling A., Vogl P., Majewski J. A., Phys. Rev. B, 1996, 53, 3764

    Article  CAS  Google Scholar 

  28. Bando H., Aiura Y., Haruyama Y., Shimitzu T., Nishihara Y., J. Vac. Sci. Technol. B, 1995, 13, 1150

    Article  CAS  Google Scholar 

  29. Bottin F., Finocchi F., Noguera C., Phys. Rev. B, 2003, 68, 035418

    Article  CAS  Google Scholar 

  30. Tanaka H., Kawai T., Surf. Sci., 1996, 365, 437

    Article  CAS  Google Scholar 

  31. Brunen J., Zegenhagen J., Surf. Sci., 1997, 389, 349

    Article  CAS  Google Scholar 

  32. Hagendorf C., Schindler K. M., Doege T., Neddermeyer H., Surf. Sci., 1998, 402–404, 581

    Article  Google Scholar 

  33. Hagendorf Ch., Schindler K. M., Doege T., Neddermeyer H., Surf. Sci., 1999, 436, 121

    Article  CAS  Google Scholar 

  34. Heifets E., Goddard W. A., Kotomin E. A., Eglitis R. I., Borstel G., Phys. Rev. B, 2004, 69, 035408

    Article  CAS  Google Scholar 

  35. Piskunov S., Kotomin E. A., Heifets E., Maier J., Eglitis R. I., Borstel G., Surf. Sci., 2005, 575, 75

    Article  CAS  Google Scholar 

  36. Johnston K., Castell M. R., Paxton A. T., Finnis M. W., Phys. Rev. B, 2004, 70, 085415

    Article  CAS  Google Scholar 

  37. Reuter K., Scheffler M., Phys. Rev. B, 2001, 65, 035406

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haitao Yu.

Additional information

Supported by the National Natural Science Foundation of China(Nos.21173072, 21301052).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, Y., Yu, H. Electronic properties of BaTiO3 (110) polar terminations. Chem. Res. Chin. Univ. 30, 794–799 (2014). https://doi.org/10.1007/s40242-014-4174-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-014-4174-z

Keywords

Navigation