Skip to main content
Log in

Construction and validation of simple magnetic nanoparticle detector based on giant magnetoresistive effect

  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

The finding of giant magnetoresistive(GMR) effect develops a new field for the sensing application with magnetic nanoparticles(MNPs) labeling. A convenient GMR sensor was built with a permanent magnet to excite the MNPs in this work. The sensing element contained a Wheatstone bridge with the GMR material as one of its branches. The magnetic field from MNPs unbalanced the Wheatstone bridge. After being amplified, the output signals were recorded. The construction and optimization of the magnetoresistive sensing platform were discussed in detail. The detection of three kinds of MNPs validated the performance of the proposed GMR sensor. The sensor showed a fast response to the addition or removal of MNPs. Because of its simplicity, this kind of GMR sensor can be developed in a routine laboratory. The finding of this new GMR sensor will promote the development of the method of probing biomolecules and the study on the biomolecular interaction after being labeled magnetically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dave S. R., Gao X. H., WIREs Nanomed. Nanobiotechnol., 2009, 1, 583

    Article  CAS  Google Scholar 

  2. Perez J. M., Josephson L., Weissleder R., Chembiochem, 2004, 5, 261

    Article  CAS  Google Scholar 

  3. Cha D. M., Han Z. H., Ma T., Li B. H., Liu G. Q., Zhu W., Chem. J. Chinese Universities, 2013, 34(4), 760

    CAS  Google Scholar 

  4. Zhu L. L., Cao Y. H., Cao G. Q., Chin. J. Anal. Chem., 2013, 41, 1724

    Article  CAS  Google Scholar 

  5. Tamanaha C. R., Mulvaney S. P., Rife J. C., Whitman L. J., Biosens. Bioelectron., 2008, 24, 1

    Article  CAS  Google Scholar 

  6. Wang S. X., Li G. X., IEEE Trans. Magn., 2008, 44, 1687

    Article  Google Scholar 

  7. Chung H. J., Castro C. M., Im H., Lee H., Weissleder R., Nat. Nano., 2013, 8, 369

    Article  CAS  Google Scholar 

  8. Mak A. C., Osterfeld S. J., Yu H., Wang S. H., Davis R. W., Jejelowo O. A., Pourmand N., Biosens. Bioelectron., 2010, 25, 1635

    Article  CAS  Google Scholar 

  9. Baselt R. D., Lee G. U., Natesan M., Matzger S. W., Sheehan P. E., Colton R., Biosens. Bioelectron., 1998, 13, 731

    Article  CAS  Google Scholar 

  10. Lee S., W. Myers R., Grossman H. L., Cho H. M., Chemla Y. R., Clarke J., Appl. Phys. Lett., 2002, 81, 3094

    Article  CAS  Google Scholar 

  11. Pamme N., Lab Chip, 2006, 6(1), 24

    Article  CAS  Google Scholar 

  12. Song C., Wang Y. Y., Li X. J., Wang G. Y., Pan F., Appl. Phys. Lett., 2012, 101, 062404–1

    Article  Google Scholar 

  13. Demidov V. E., Ulrichs H., Gurevich S. V., Demokritov S. O., Tiberkevich V. S., Slavin A. N., Zholud A., Urazhdin S., Nat. Commun., 2014, 5, 3179

    Article  CAS  Google Scholar 

  14. Issadore D., Chung J., Shao H., Liong M., Ghazani A. A., Castro C. M., Weissleder R., Lee H., Sci. Transl. Med., 2012, 4, 141

    Article  Google Scholar 

  15. Daughton J. M., Wang D., Beech R. S., Fink A., Taylor J. A., J. Appl. Phys., 1998, 83, 6688

    Article  Google Scholar 

  16. Thilwind R. E., Megens M., van Zon J. B. A. D., Coehoorn R., Prins M. W. J., J. Magn. Magn. Mater., 2008, 320, 486

    Article  CAS  Google Scholar 

  17. Amrmiya Y., Tanaka T., Matsunaga B. Y. T., J. Biotech., 2005, 120, 308

    Article  Google Scholar 

  18. Wang S. X., Bae S. Y., Li G. X., Sun S. H., White R. L., Kemp J. T., Webb C. D., J. Magn. Magn. Mater., 2005, 293, 731

    Article  CAS  Google Scholar 

  19. Michael J. F., Anal. Chem., 2003, 75, 505A

    Google Scholar 

  20. Rife J. C., Miller M. M., Sheehan P. E., Tamanaha C. R., Tondra M., Whitman L. J., Sensor Actuat. A, Phys., 2003, 107, 209

    Article  CAS  Google Scholar 

  21. Graham D. L., Ferreira H. A., Feliciano N., Freitas P. P., Clarke L. A., Amaral M. D., Sensor Actuat. B, Chem., 2005, 107, 936

    Article  CAS  Google Scholar 

  22. Miller M. M., Sheehan P. E., Edelstein R. L., Tamanaha C. R., Zhong L., Bounnak S., Whitman L. J., Colton R. J., J. Magn. Magn. Mater., 2001, 225, 138

    Article  CAS  Google Scholar 

  23. Graham D. L., Ferreira H. A., Freitas P. P., Trends Biotech., 2004, 22, 455

    Article  CAS  Google Scholar 

  24. Gijs M. A. M., Microfluid Nanoflui., 2004, 1, 22

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuebo Yin.

Additional information

Supported by the National Basic Research Program of China(No.2011CB707703), the National Natural Science Foundation of China(Nos.21375064, 21075068) and the Fundamental Research Funds for the Central Universities of China(No.20130031110016).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, C., Xin, Y. & Yin, X. Construction and validation of simple magnetic nanoparticle detector based on giant magnetoresistive effect. Chem. Res. Chin. Univ. 30, 743–748 (2014). https://doi.org/10.1007/s40242-014-4023-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-014-4023-0

Keywords

Navigation