Skip to main content
Log in

Pyrolysis mechanism of hemicellulose monosaccharides in different catalytic processes

  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

The pyrolysis behaviors of four different hemicellulose monosaccharides, namely, two pentoses(xylose and arabinose) and two hexoses(mannose and galactose) catalyzed by HZSM-5 were investigated. The effects of two different processes by which the catalyst comes into contact with the substrate, namely, mixed with monosaccharide( in-bed) or layered above monosaccharide(in situ), were compared. Evolution characteristics of typical pyrolytic products(H2O, CO2, acids, furans and aromatics) were achieved by thermogravimetry-Fourier transform infrared spectroscopy. The in-bed catalytic process significantly lowered the pyrolytic temperature and increased the production of furans and acids at a low temperature by enhancing dehydration, retro-aldol fragmentation and Grob fragmentation. During the in situ catalytic process, volatiles generated from monosaccharides passed through a catalyst bed and underwent further dehydration, decarboxylation, and decarbonylation, significantly lowering the yields of acids and furans. The yield of aromatics was enhanced, and the corresponding volatilization temperature was lowered, especially under the in-bed catalytic conditions. Pentoses entered into the zeolite pores more easily than hexoses did because of their smaller molecular size; thus, the in-bed catalytic process drastically affected pentose pyrolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bridgwater A.V., J. Anal. Appl. Pyrol., 1999, 51, 3

    Article  CAS  Google Scholar 

  2. Corma A., Iborra S., Velty A., Chem. Rev., 2007, 107, 2411

    Article  CAS  Google Scholar 

  3. Czernik S., Bridgwater A., Energ. Fuel, 2004, 18, 590

    Article  CAS  Google Scholar 

  4. Mihalcik D. J., Mullen C. A., Boateng A. A., J. Anal. Appl. Pyrol., 2011, 92, 224

    Article  CAS  Google Scholar 

  5. Bulushev D. A., Ross J. R., Catal. Today, 2011, 171, 1

    Article  CAS  Google Scholar 

  6. Taarning E., Osmundsen C. M., Yang X., Voss B., Andersen S. I., Christensen C. H., Energ. Environ. Sci., 2011, 4, 793

    Article  CAS  Google Scholar 

  7. Stephanidis S., Nitsos C., Kalogiannis K., Iliopoulou E., Lappas A., Triantafyllidis K., Catal. Today, 2011, 167, 37

    Article  CAS  Google Scholar 

  8. Park H. J., Heo H. S., Jeon J. K., Kim J., Ryoo R., Jeong K. E., Park Y. K., Appl. Catal. B: Environ., 2010, 95, 365

    Article  CAS  Google Scholar 

  9. Wang S. R., Guo X. J., Liang T., Zhou Y., Luo Z. Y., Bioresource Technol., 2012, 104, 722

    Article  CAS  Google Scholar 

  10. Guo X. J., Wang S. R., Wang K. G., Luo Z. Y., Chem. Res. Chinese Universities, 2011, 27(3), 426

    CAS  Google Scholar 

  11. Wang K. G., Kim K. H., Brown R. C., Green Chem., 2014, 16, 727

    Article  CAS  Google Scholar 

  12. Stöcker M., Angew. Chem. Int. Ed., 2008, 47, 9200

    Article  Google Scholar 

  13. Carlson T. R., Jae J., Lin Y. C., Tompsett G. A., Huber G. W., J. Catal., 2010, 270, 110

    Article  CAS  Google Scholar 

  14. Jae J., Tompsett G. A., Foster A. J., Hammond K. D., Auerbach S. M., Lobo R. F., Huber G. W., J. Catal., 2011, 279, 257

    Article  CAS  Google Scholar 

  15. Mohan D., Pittman C. U., Steele P. H., Energ. Fuel, 2006, 20, 848

    Article  CAS  Google Scholar 

  16. Wang S. R., Liang T., Ru B., Guo X. J., Chem. Res. Chinese Universities, 2013, 29(4), 782

    Article  CAS  Google Scholar 

  17. Yang H. P., Yan R., Chen H. P., Lee D. H., Zheng C. G., Fuel, 2007, 86, 1781

    Article  CAS  Google Scholar 

  18. Saha B. C., Biotechnol. Adv., 2000, 18, 403

    Article  CAS  Google Scholar 

  19. Wang S. R., Ru B., Lin H. Z., Luo Z. Y., Bioresource Technol., 2013, 143, 378

    Article  CAS  Google Scholar 

  20. Zhao Y., Pan T., Zuo Y., Guo Q. X., Fu Y., Bioresource Technol., 2013, 147, 37

    Article  CAS  Google Scholar 

  21. Baerlocher C., McCusker L. B., Olson D. H., Atlas of Zeolite Framework Types, Elsevier, Amsterdam, 2007

    Google Scholar 

  22. Yang C. Y., Lu X. S., Lin W. G., Yang X. M., Yao J. Z., Chem. Res. Chinese Universities, 2006, 22(4), 524

    Article  CAS  Google Scholar 

  23. Liu Q., Wang S. R., Zheng Y., Luo Z. Y., Cen K. F., J. Anal. Appl. Pyrol., 2008, 82, 170

    Article  CAS  Google Scholar 

  24. Bassilakis R., Carangelo R., Wojtowicz M., Fuel, 2001, 80, 1765

    Article  CAS  Google Scholar 

  25. Räisänen U., Pitkänen I., Halttunen H., Hurtta M., J. Therm. Anal. Calorim., 2003, 72, 481

    Article  Google Scholar 

  26. Zhang M. H., Geng Z. F., Yu Y. Z., Energ. Fuel, 2011, 25, 2664

    Article  CAS  Google Scholar 

  27. Guler L. P., Yu Y. Q., Kenttämaa H. I., J. Phys. Chem. A, 2002, 106, 6754

    Article  CAS  Google Scholar 

  28. Saka S., Wood and Cellulosic Chemistry, Marcel Dekker, New York, 2000, 51

    Google Scholar 

  29. Palmqvist E., Hahn-Hägerdal B., Bioresource Technol., 2000, 74, 25

    Article  CAS  Google Scholar 

  30. Ponder G. R., Richards G. N., Carbohyd. Res., 1991, 218, 143

    Article  CAS  Google Scholar 

  31. Carlson T. R., Vispute T. P., Huber G. W., ChemSusChem, 2008, 1, 397

    Article  CAS  Google Scholar 

  32. Gayubo A. G., Aguayo A. T., Atutxa A., Aguado R., Olazar M., Bilbao J., Ind. Eng. Chem. Res., 2004, 43, 2619

    Article  CAS  Google Scholar 

  33. van Putten R. J., van der Waal J. C., de Jong E., Rasrendra C. B., Heeres H. J., de Vries J. G., Chem. Rev., 2013, 113, 1499

    Article  CAS  Google Scholar 

  34. Vinu R., Broadbelt L. J., Energ. Environ. Sci., 2012, 5, 9808

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunjiang Yu.

Additional information

Supported by the National Natural Science Foundation of China(No.51276166), the National Basic Research Program of China(No.2013CB228101), the Program for New Century Excellent Talents in University, China(No.NCET-10-0741) and the Zhejiang Provincial Natural Science Foundation of China(No.R1110089).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Ru, B., Lin, H. et al. Pyrolysis mechanism of hemicellulose monosaccharides in different catalytic processes. Chem. Res. Chin. Univ. 30, 848–854 (2014). https://doi.org/10.1007/s40242-014-4019-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-014-4019-9

Keywords

Navigation