Skip to main content
Log in

Selective 3,4-polymerization mechanism of isoprene catalyzed by rare earth alkyl complexes

  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

The mechanism of selective 3,4-polymerization reaction of isoprene catalyzed by the rare earth lutecium( III) alkyl complexes [2,6-Me2Ph-N-CH2-C(CH2SiMe3)=N-PhMe2-2,6]Lu(CH2SiMe3)2(THF) was investigated by means of the M06/sdd method with solvation effects taken into account. The results show that the structure of the catalyst core remained almost unchanged as the isoprene molecules were alternatively inserted into the complex at two opposite sides. The Gibbs free energies of the coordination complexes, transition state and intermediates indicate that all the isoprene molecules prefer to insert into the complex with the 3,4-polymerization selectivity as catalyzed by the catalyst, which is consistent with the experimental observations. It is found that the insertion reaction of each isoprene is exothermic, which comes mainly from the coordination of the isoprene molecule to the lutecium( III) atom. The solvation effects were confirmed important in predicting the Gibbs free energies of the present reaction system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Natta G., Porri L., Carbonaro A., Stoppa G., Makromol. Chem., 1964, 77(126), 114

    Article  CAS  Google Scholar 

  2. Lehmkuhl H., Čuljković J., Nehl H., Justus Liebigs Annalen der Chem., 1973, 4, 666

    Article  Google Scholar 

  3. Arndt S., Okuda J., Adv. Synth. Catal., 2005, 347(2/3), 339

    Article  CAS  Google Scholar 

  4. Valente A., Zinck P., Vitorino M. J., Mortreux A., Visseaux M., J. Polym. Sci. A: Polym. Chem., 2010, 48(21), 4640

    Article  CAS  Google Scholar 

  5. Dong W. M., Yang J. H., Pang S. F., Chem. J. Chinese Universities, 2000, 21(3), 493

    CAS  Google Scholar 

  6. Fischbach A., Perdih F., Herdtweck E., Anwander R., Organometallics, 2006, 25(7), 1626

    Article  CAS  Google Scholar 

  7. Wang D., Li S., Liu X., Gao W., Cui D., Organometallics, 2008, 27(24), 6531

    Article  CAS  Google Scholar 

  8. Zhang H., Luo Y., Hou Z., Macromolecules, 2008, 41(4), 1064

    Article  CAS  Google Scholar 

  9. Jitchum V., Perrier S., Macromolecules, 2007, 40(5), 1408

    Article  CAS  Google Scholar 

  10. Glöckner A., Bannenberg T., Daniliuc C. G., Jones P. G., Tamm M., Inorg. Chem., 2012, 51(7), 4368

    Article  Google Scholar 

  11. Sarazin Y., Liu B., Roisnel T., Maron L., Carpentier J. F., J. Am. Chem. Soc., 2011, 133(23), 9069

    Article  CAS  Google Scholar 

  12. Huang F., Lu G., Zhao L., Li H., Wang Z. X., J. Am. Chem. Soc., 2010, 132(35), 12388

    Article  CAS  Google Scholar 

  13. Schinzel S., Bindl M., Visseaux M., Chermette H., J. Phys. Chem. A, 2006, 110(39), 11324

    Article  CAS  Google Scholar 

  14. Bonnet F., Visseaux M., Pereira A., Barbier-Baudry D., Macromolecules, 2005, 38(8), 3162

    Article  CAS  Google Scholar 

  15. Nakajima Y., Hou Z., Organometallics, 2009, 28(24), 6861

    Article  CAS  Google Scholar 

  16. Li D., Li S., Cui D., Zhang X., Organometallics, 2010, 29(9), 2186

    Article  CAS  Google Scholar 

  17. Lü K., Cui D., Organometallics, 2010, 29(13), 2987

    Article  Google Scholar 

  18. Wang B., Wang D., Cui D., Gao W., Tang T., Chen X., Jing X., Organometallics, 2007, 26(13), 3167

    Article  CAS  Google Scholar 

  19. Zhang L., Luo Y., Hou Z., J. Am. Chem. Soc., 2005, 127(42), 14562

    Article  CAS  Google Scholar 

  20. Arndt S., Beckerle K., Zeimentz P. M., Spaniol T. P., Okuda J., Angew. Chem. Int. Ed., 2005, 44(45), 7473

    Article  CAS  Google Scholar 

  21. Du G., Wei Y., Ai L., Chen Y., Xu Q., Liu X., Zhang S., Hou Z., Li X., Organometallics, 2011, 30, 160

    Article  CAS  Google Scholar 

  22. Liu Y., Sun C., Zhang S., Li X., Theor. Chem. Acc., 2013, 132(3), 1341

    Article  Google Scholar 

  23. Schultz N. E., Zhao Y., Truhlar D. G., J. Phys. Chem. A, 2005, 109(19), 4388

    Article  CAS  Google Scholar 

  24. Schultz N. E., Zhao Y., Truhlar D. G., J. Phys. Chem. A, 2005, 109(49), 11127

    Article  CAS  Google Scholar 

  25. Zhao Y., Schultz N. E., Truhlar D. G., J. Chem. Phys, 2005, 123(16), 161103

    Article  Google Scholar 

  26. Zhao Y., Truhlar D. G., J. Chem. Theory. Comput., 2008, 4(11), 1849

    Article  CAS  Google Scholar 

  27. Dolg M., Stoll H., Savin A., Preuss H., Theor. Chim. Acta, 1989, 75(3), 173

    Article  CAS  Google Scholar 

  28. Dolg M., Stoll H., Preuss H., J. Chem. Phys., 1989, 90(3), 1730

    Article  CAS  Google Scholar 

  29. Tomasi J., Mennucci B., Cammi R., Chem. Rev., 2005, 105(8), 2999

    Article  CAS  Google Scholar 

  30. Jonas V., Thiel W., J. Chem. Phys., 1995, 102(21), 8474

    Article  CAS  Google Scholar 

  31. Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Mennucci B., Petersson G. A., Nakatsuji H., Caricato M., Li X., Hratchian H. P., Izmaylov A. F., Bloino J., Zheng G., Sonnenberg J. L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J. J. A., Peralta J. E., Ogliaro F., Bearpark M., Heyd J. J., Brothers E., Kudin K. N., Staroverov V. N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Rega N., Millam J. M., Klene M., Knox J. E., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Martin R. L., Morokuma K., Zakrzewski V. G., Voth G. A., Salvador P., Dannenberg J. J., Dapprich S., Daniels A. D., Farkas Ö., Foresman J. B., Ortiz J. V., Cioslowski J., Fox D. J., Gaussian 09, Revision B.01, Gaussian Inc., Wallingford CT, 2009

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaofang Li or Shaowen Zhang.

Additional information

Supported by the National Natural Science Foundation of China(Nos.21173022, 20974014, 21274012).

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Sun, C., Li, X. et al. Selective 3,4-polymerization mechanism of isoprene catalyzed by rare earth alkyl complexes. Chem. Res. Chin. Univ. 30, 114–118 (2014). https://doi.org/10.1007/s40242-014-3483-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-014-3483-6

Keywords

Navigation