Skip to main content
Log in

Synthesis and characterization of SnO2-TiO2 nanocomposite with rutile-phase via hydrothermal method at low temperature

  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

With Ti(SO4)2, SnCl4·5H2O and urea as raw materials, SnO2-TiO2 nanocomposites were synthesized via low temperature hydrothermal method at 80–100 °C in aqueous solutions. The morphologies of the products were altered systematically by varying the Ti/Sn molar ratio of the reactants, and rutile-phase particles were obtained with an average diameter of about 52.2 nm at a molar ratio of Ti/Sn=7.5. The surface composition of the composite was revealed by X-ray photoelectron spectroscopy(XPS) and X-ray diffraction(XRD) to be solely TiO2 with a rutile structure. This new composite material exhibits a high ultraviolet absorption capacity, and its photocatalytic activity for phenol oxidation is much lower than that of the commercial titania nanoparticles(P25).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Subasri R., Shinohara T., Electrochem. Commun., 2003, 89, 897

    Article  Google Scholar 

  2. Diebold U., Surf. Sci. Rep., 2003, 48, 53

    Article  CAS  Google Scholar 

  3. Hoffmann M. R., Martin S. T., Choi W., Bahnemann D. W., Chem. Rev., 1995, 95, 69

    Article  CAS  Google Scholar 

  4. Zhang W. S., Zhu Z. W., Cheng C. Y., Hydrometallurgy, 2011, 108, 177

    Article  CAS  Google Scholar 

  5. Peter L. M., Ponomarev E. A., Frsnco G., Shaw N., J. Electrochim. Acta, 1999, 45, 549

    Article  CAS  Google Scholar 

  6. Park N. G., Lagemant J. V., Frank A. J., J. Phys. Chem. B, 2000, 104, 8989

    Article  CAS  Google Scholar 

  7. Croce F., Appetecchi G. B., Persi L., Scrosati B., Nature, 1998, 394, 456

    Article  CAS  Google Scholar 

  8. Bai N., Li S. G., Chen H. Y., Pang W. Q., J. Mater. Chem., 2001, 11, 3099

    Article  CAS  Google Scholar 

  9. Li Y. Z., Lee N. H., Hwang D. S., Song J. S., Lee E. G., Kim S. J., Langmuir, 2004, 20, 10838

    Article  CAS  Google Scholar 

  10. Newman M. D., Stotland M., Ellis J. I., J. Am. Acad. Dermatol, 2009, 61, 685

    Article  CAS  Google Scholar 

  11. Shklover V., Nazeeruddin M. K., Zakeeruddin S. M., Barbe C., Kay A., Haibach T., Steurer W., Hermann R., Nissen H. U., Gratel M., Chem. Mater., 1997, 9, 430

    Article  Google Scholar 

  12. Dransfield G. P., Radiat., Prot. Dosim., 2000, 91, 271

    Article  CAS  Google Scholar 

  13. Asahi R., Morikawa T., Ohwaki T., Aoki K., Taga Y., Science, 2001, 293, 269

    Article  CAS  Google Scholar 

  14. Kumar P. M., Badrinarayanan S., Sastry M., Thin Solid Films, 2000, 358, 122

    Article  CAS  Google Scholar 

  15. Alonso E., Montequi I., Lucas S., Cocero M. J., J. Supercrit. Fluid., 2007, 39, 453

    Article  CAS  Google Scholar 

  16. Yang S. F., Liu Y. H., Guo Y. P., Zhao J. Z., Xu H. F., Wang Z. C., Mater. Chem. Phys., 2003, 77, 501

    Article  CAS  Google Scholar 

  17. Cheng H. M., Ma J. M., Zhao Z. G., Qi L. M., Chem. Mater., 1995, 7, 663

    Article  CAS  Google Scholar 

  18. Pal B., Sharon M., Nogami G., Mater. Chem. Phys., 1999, 119, 163

    Google Scholar 

  19. Wang Y. R., Zhou B., Wang Z. C., Zhao X., Chem. J. Chinese Universities, 2012, 33(10), 2146

    CAS  Google Scholar 

  20. Pan J., Hühne S. M., Shen H., Xiao L. S., Born P., Mader W., Mathur S., J. Phys. Chem. C, 2011, 115, 17265

    Article  CAS  Google Scholar 

  21. Chappel S., Chen S. G., Zaban A., Langmuir, 2002, 18, 3336

    Article  CAS  Google Scholar 

  22. Vinodgopal K., Bedja I., Kamat P. V., Chem. Mater., 1996, 8, 2180

    Article  CAS  Google Scholar 

  23. Bedja I., Kamat P. V., J. Phys. Chem., 1995, 99, 9182

    Article  CAS  Google Scholar 

  24. Vinodgopal K., Kamat P. V., Environ. Sci. Technol., 1995, 29, 841

    Article  CAS  Google Scholar 

  25. Li R. X., Yabe S., Yamashita M., Momose S., Yoshida S., Yin S., Sato T., Solid State Ionics, 2002, 151, 235

    Article  CAS  Google Scholar 

  26. Ghodsi F. E., Tepehan F. Z., Tepehan G. G., Electrochim. Acta, 1999, 44, 3127

    Article  CAS  Google Scholar 

  27. Masui T., Yamamoto M., Sakata T., Mori H., Adachi G. Y., J. Mater. Chem., 2000, 10, 353

    Article  CAS  Google Scholar 

  28. Yabe S., Yamashita M., Momose S., Tahira K., Int. J. Inorganic Mater., 2001, 3, 1003

    Article  CAS  Google Scholar 

  29. Li R. X., Yabe S., Yamashita M., Momose S., Yoshida S., Yin S., Sato T., Mater. Chem. Phys., 2002, 75, 39

    Article  CAS  Google Scholar 

  30. Lautenschlager S., Wulf H. C., Pittelkow M. R., Lancet, 2007, 370, 528

    Article  CAS  Google Scholar 

  31. Kullavanijaya P., Lim H. W., J. Am. Acad. Dermatol, 2005, 52, 937

    Article  Google Scholar 

  32. Wang X. Y., Jiang Y. S., Zhu H., Zhang J. C., Chem. Res. Chinese Universities, 2011, 27(3), 486

    CAS  Google Scholar 

  33. Wang Y. Q., Chen S. G., Tang X. H., Palchik O., Zaban A., Koltypin Y., Gedanken A., J. Mater. Chem., 2001, 11, 521

    Article  CAS  Google Scholar 

  34. Sclafani A., Palmisano L., Schiavello M., J. Phys. Chem., 1990, 94, 829

    Article  CAS  Google Scholar 

  35. Hagfeldt A., Gratzel M., Chem. Rev., 1995, 95, 49

    Article  CAS  Google Scholar 

  36. Okamoto K., Yamamoto Y., Tanaka H., Tanaka M., Itaya A., Bull. Chem. Soc. Jpn., 1985, 58, 2015

    Article  CAS  Google Scholar 

  37. Bickley R. I., Carreno T. G., Lees J. S., Palmisano L., Tilley R. J. D., J. Solid State Chem., 1991, 92, 178

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu Zhao.

Additional information

Supported by the Jilin Provincial Science and Technology Development Funds, China(No.20100334) and the Jilin Provincial Education Department’s “12th Five-Year” Scientific and Technological Research Projects, China[No.126(2013)].

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Yr., Li, Wy., Zhou, B. et al. Synthesis and characterization of SnO2-TiO2 nanocomposite with rutile-phase via hydrothermal method at low temperature. Chem. Res. Chin. Univ. 29, 617–620 (2013). https://doi.org/10.1007/s40242-013-3067-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-013-3067-x

Keywords

Navigation