Skip to main content
Log in

From amorphous carbon to carbon nanobelts and vertically oriented graphene nanosheets synthesized by plasma-enhanced chemical vapor deposition

  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

Carbon materials with various structures were produced via plasma-enhanced chemical vapor deposition by controlling substrate temperature and mixed gases in the atmosphere. Scanning electron microscopy(SEM), transmission electron microscopy(TEM), high resolution transmission electron microscopy(HRTEM) and Raman spectroscopy were employed to investigate the morphology and structure of the materials. The results show that at a low substrate temperature(100 °C) in CH4:Ar(flow rate ratio was 100 cm3/min:10 cm3/min), amorphous carbon formed on Si(100) that could act as a support for the growth of carbon nanobelt and layer graphene at 800 °C. Vertically oriented multi-layer graphene nanosheets(GNs) were catalyst-free synthesized on Si and Ni foam at 800 °C in a mixture of CH4:Ar(20 cm3/min:60, 80 and 100 cm3/min). The capacitor character investigated by cyclic voltammetry and galvanostatic charge/discharge indicates that for the as-synthesized GNs, the electrochemical capacitance is very small(16 F/g at current density of 16 A/g). However, having been treated in acidic solution, the GNs exhibited good capacitive behavior, with a capacitance of 166 F/g, and after 800 charge/discharge cycles at 32 A/g, the capacitance could retain about 88.4%. The enhancement of specific capacitance is attributed to the increase of specific surface area after etching treatment of them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ruoff R., Nat. Nanotechnol., 2008, 3, 10

    Article  CAS  Google Scholar 

  2. Zhu L. X., Li Y. Z., Zhao X., Zhang Q. H., Chem. J. Chinese Universities, 2012, 33(8), 1804

    CAS  Google Scholar 

  3. Sanchez V. C., Jachak A., Hurt R. H., Kane A. B., Chem. R. Toxicology, 2012, 25(1), 15

    Article  CAS  Google Scholar 

  4. Pumera M., Chem. Society Rev., 2010, 39(11), 4146

    Article  CAS  Google Scholar 

  5. Xu Y., Zheng W. T., Yu W. X., Hua L. G., Zhang Y. J., Zhao Z. D., Chem. Res. Chinese Universities, 2010, 26(3), 491

    Google Scholar 

  6. Miller J. R., Outlaw R. A., Holloway B. C., Science, 2010, 329, 1637

    Article  CAS  Google Scholar 

  7. Bo Z., Wen Z. H., Kim H., Lu G. H., Yu K. H., Chen J. H., Carbon, 2012, 50, 4379

    Article  CAS  Google Scholar 

  8. Rider A. E., Kumar S., Furman S. A., Ostrikov K., Chem. Commun., 2012, 48, 2659

    Article  CAS  Google Scholar 

  9. Zhao C. M., Wang X., Zheng W. T., Int. J. Hydrogen Energy, 2012, 37, 11846

    Article  CAS  Google Scholar 

  10. Jing L. I., Wang X. B., Yang J., Yang X. Y., Wan L., Chem. J. Chinese Universities, 2013, 34(4), 800

    Google Scholar 

  11. Wang Z. P., Shoji M., Ogata H., Appl. Surf. Sci., 2011, 257, 9082

    Article  CAS  Google Scholar 

  12. Zhu M., Carbon, 2007, 45, 2229

    Article  CAS  Google Scholar 

  13. Krivchenko V. A., Dvorkin V. V., Dzbanovsky N. N., Timofeyev M. A., Stepanov A. S., Rakhimov A. T., Suetin N. V., Vilkov O. Y., Yashina L. V., Carbon, 2012, 50, 1477

    Article  CAS  Google Scholar 

  14. Qi J. L., Wang X., Zheng W. T., Tian H. W., Hu C. Q., Peng Y. S., J. Phys. D, 2010, 43(5), 055302

    Article  Google Scholar 

  15. Shang N. G., Papakonstantinou P., Mamullan M., Chu M., Atamboulis A., Potenza A., Dhesi S. S., Marchetto H., Adv. Funct. Mater., 2008, 18, 3506

    Article  CAS  Google Scholar 

  16. Wu Y., Qiao P., Chong T., Shen Z., Adv. Mater., 2002, 14, 64

    Article  CAS  Google Scholar 

  17. Zhao X., Tian H., Zhu M. Y., Tian K., Wang J. J., Kang F. Y., Outlaw R. A., J. Power Souce, 2009, 194, 1208

    Article  CAS  Google Scholar 

  18. Cai M. Z., Outlaw R. A., Butler S. M., Miller J. R., Carbon, 2012, 50, 5481

    Article  CAS  Google Scholar 

  19. Cott D. J., Verheijen M., Richard O., Radu I., Gendt S. D., Elshocht S. V., Vereecken P. M., Carbon, 2013, 58, 59

    Article  CAS  Google Scholar 

  20. Rao C. N. R., Sood A. K., Subrahmanyam K. S., Govindaraj A., Angew. Chem. Int. Ed., 2009, 48(42), 7752

    Article  CAS  Google Scholar 

  21. Liu C. G., Yu Z. N., Neff D., Zha M. A., Jang B., Nano Lett., 2010, 10, 4863

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-tao Zheng.

Additional information

Supported by the Natural Science Foundation of Jilin Province, China(No.201215025), the Major Science and Technology Project of Jilin Province, China(No.11ZDGG010), the Program for Changjiang Scholars and Innovative Research Team in University of China and the “211” and “985” Project of Jilin University, China.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Zhao, Cm., Deng, T. et al. From amorphous carbon to carbon nanobelts and vertically oriented graphene nanosheets synthesized by plasma-enhanced chemical vapor deposition. Chem. Res. Chin. Univ. 29, 755–758 (2013). https://doi.org/10.1007/s40242-013-3044-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-013-3044-4

Keywords

Navigation