Skip to main content
Log in

Multivariate curve resolution combined with on-line infrared spectroscopy for researching the synthesis mechanism of 3,4-bis(4′-aminofurazano-3′)furoxan

  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

3,4-Bis(4′-aminofurazano-3′)furoxan(DATF), one of a new generation of high energy density materials, shows lots of interesting properties such as lower sensitivity, excellent thermal stability and superior detonation performance in chemistry and physics. In this paper, on-line infrared(IR) spectroscopy was used to monitor the synthesis process of DATF. The concentration profiles and IR spectra of the components were determined by analyzing the IR data via principal component analysis(PCA), evolving factor analysis(EFA) and multivariate curve resolution-alternating least squares(MCR-ALS). The geometric configurations of reactant, intermediates and product were optimized with the density functional theory(DFT) at B3LYP/6-31+G(d, p) level. Their vibrational frequencies and IR spectra were obtained on the basis of vibrational analysis. The result obtained by the chemometric resolution methods agreed well with that obtained by quantum chemical calculation method, which demonstrated the reliability of the proposed chemometric resolution methods. The unstable intermediate 3-amino-4-oxycyanofurazan(AOF) was confirmed via comparing the IR spectra resloved by chemometric resolution methods with those calculated by B3LYP/6-31+G(d,p) and analyzed by MCR-ALS. Finally, the possible synthesis mechanism of DATF was deduced by analyzing the above IR spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhou Y. S., Li J. K., Huang X. P., Zhou C., Zheng W., Zhang Z. Z., Chin. J. Explosives Propellants, 2007, 30, 54

    Google Scholar 

  2. Zhou Y. S., Wang B. Z., Li J. K., Zhou C., Hu L., Chen Z. Q., Zhang Z. Z., Acta Chim. Sinica, 2011, 69, 1673

    CAS  Google Scholar 

  3. Zhao F. Q., Chen P., Luo Y., Zhang R. E., Zhang Z. Z., Zhou Y. S., Li S. W., J. Propulsion Technol., 2004, 5, 570

    Google Scholar 

  4. Luo Y. F., Wang B. Z., Huo H., Liu Q., Lian P., Chin. J. Org. Chem., 2010, 30, 444

    CAS  Google Scholar 

  5. Cai J. R., Chen Q. S., Wan X. M., Food Chemistry, 2011, 126, 1354

    Article  CAS  Google Scholar 

  6. Zhang S. L., Xiong X. F., Yu T., Wang Y. B., Wang B. Z., Ge Z. X., Zhai G. H., Li H., Chem. J. Chinese Universities, 2012, 33(7), 1444

    CAS  Google Scholar 

  7. Kim Y. M., MacGregor J. F., Kostanski L. K., Chemom. Intell. Lab. Syst., 2005, 75, 77

    Article  CAS  Google Scholar 

  8. Masoud S. R., Masoumeh H., Anal. Chim. Acta, 2009, 648, 60

    Article  Google Scholar 

  9. Paul G., Britta S., Josefina N., Tom L., Torbjfrn L., Jim B., At. Spectrosc., 2004, 59, 1347

    Google Scholar 

  10. Yves R., Pascal C., Lene M., Carmen L. M., Auŕelie E., Nadine J., J. Pharm. Biomed. Anal., 2007, 44, 683

    Article  Google Scholar 

  11. Wang K., Zhang F., Li H., Acta Chim. Sinica, 2007, 65, 1493

    CAS  Google Scholar 

  12. Esteves da Silva J. C. G., Machado A. A. S. C., Chemom. Intell. Lab. Syst., 1995, 27, 115

    CAS  Google Scholar 

  13. Dohnal V., Zhang F., Li H., Havel J., Electrophoresis, 2003, 15, 2462

    Article  Google Scholar 

  14. Zhang F., Chen Y., Li H., Electrophoresis, 2007, 28, 3674

    Article  CAS  Google Scholar 

  15. Li H., Zhang F., Josef H., Electrophoresis, 2003, 24, 3107

    Article  CAS  Google Scholar 

  16. Tauler R., Smilde A., Kowalsky R., J. Chemom., 1995, 9, 31

    Article  CAS  Google Scholar 

  17. Stokkum I. H. M. V., Katharine M. M., Mihaleva V. V., Chemom. Intell. Lab. Syst., 2009, 95, 150

    Article  Google Scholar 

  18. Garrido M., Lázaro I., Larrechi M. S., Rius F. X., Anal. Chim. Acta, 2004, 515, 65

    Article  CAS  Google Scholar 

  19. Pasamontes A., Callao M. P., Trends Anal. Chem., 2006, 25, 77

    Article  CAS  Google Scholar 

  20. Tauler R., Chemom. Intell. Lab. Sys., 1995, 30, 133

    Article  CAS  Google Scholar 

  21. Windig W., Guilment J., Anal. Chem., 1991, 63, 1425

    Article  CAS  Google Scholar 

  22. Windig W., Liebman S. A., Wasserman M. B., Snyder P. A., Anal. Chem., 1988, 60, 1503

    Article  CAS  Google Scholar 

  23. Manne R., Chemom. Intell. Lab. Syst., 1995, 27, 89

    CAS  Google Scholar 

  24. Tauler R., Durand G., Barceló D., Chromatographia, 1992, 33, 244

    Article  CAS  Google Scholar 

  25. Sun C. H., Zeng Y. L., Xu B. E., Wang J. M., Li X. Y., Meng L. P., Acta Chim. Sinica, 2011, 69, 8

    CAS  Google Scholar 

  26. Becke A. D., J. Chem. Phys., 1993, 98, 5648

    Article  CAS  Google Scholar 

  27. Zhang J. G., Liang Y. H., Xie S. H., Feng J. L., Wang K., Zhang T. L., Chem. Res. Chinese Universities, 2012, 28(6), 931

    CAS  Google Scholar 

  28. Ge Z. X., Lai W. P., Lian P., Wang B. Z., Xue Y. Q., Chin. J. Energ. Mater., 2008, 16, 280

    CAS  Google Scholar 

  29. Lian P., Lai W. P., Wang B. Z., Ge Z. X., Zhu W. L., Xue Y. Q., Acta Chim. Sinica, 2009, 67, 2343

    CAS  Google Scholar 

  30. Li L., Lin X. Y., Li Z. H., Chem. Res. Chinese Universities, 2011, 27(6), 1006

    CAS  Google Scholar 

  31. Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Montgomery J. A. Jr., Vreven T., Kudin K. N., Burant J. C., Millam J. M., Iyengar S. S., Tomasi J., Barone V., Mennucci B., Cossi M., Scalmani G., Rega N., Petersson G. A., Nakatsuji H., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Klene M., Li X., Knox J. E., Hratchian H. P., Cross J. B., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochter-ski J. W., Ayala P. Y., Morokuma K., Voth G. A., Sal-vador P., Dannenberg J. J., Zakrzewski G., Dapprich S., Daniels A. D., Strain M. C., Farkas O., Malick D. K., Rabuck A. D., Raghavachari K., Foresman J. B., Ortiz J. V., Cui Q., Baboul A. G., Clifford S., Cioslowski J., Stefanov B. B., Liu G., Liashenko A., Piskorz P., Komaromi I., Martin R. L., Fox D. J., Keith T., Al-Laham M. A., Peng C. Y., Nanayakkara A., Challacombe M., Gill P. M. W., Johnson B., Chen W., Wong M. W., Gonzalez C., Pople J. A., Gaussian 03, Revision D.01, Gaussian Inc., Wallingford CT, 2004

    Google Scholar 

  32. Scott A. P., Radom L., J. Phys. Chem., 1996, 100, 16502

    Article  CAS  Google Scholar 

  33. Lai W. P., Lian P., Wang B. Z., Luo Y. F., Ge Z. X., Zhang Z. Z, Xue Y. Q., Chin. J. Comput. Appl. Chem., 2007, 24, 1025

    CAS  Google Scholar 

  34. Li T., Meng Z. H., Wang P., Wang B. Z., Wang K., Ge Z. X., Qin G. M., Li H., Acta Chim. Sinica, 2010, 68, 2104

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Li.

Additional information

Supported by the National Natural Science Foundation of China(No.21175106) and the Specialized Research Fund for the Doctoral Program of Higher Education, China(No.20126101110019).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, N., Sun, Kl., Liu, Y. et al. Multivariate curve resolution combined with on-line infrared spectroscopy for researching the synthesis mechanism of 3,4-bis(4′-aminofurazano-3′)furoxan. Chem. Res. Chin. Univ. 29, 759–764 (2013). https://doi.org/10.1007/s40242-013-3043-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-013-3043-5

Keywords

Navigation