Skip to main content
Log in

Electrochemical study and application on shikonin at poly(diallyldimethylammonium chloride) functionalized graphene sheets modified glass carbon electrode

  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

The electrochemical behaviors of shikonin at a poly(diallyldimethylammonium chloride) functionalized graphene sheets modified glass carbon electrode(PDDA-GS/GCE) have been investigated. Shikonin could exhibit a pair of well-defined redox peaks at the PDDA-GS/GCE located at 0.681 V(E pa) and 0.662 V(E pc)[vs. saturated calomel electrode(SCE)] in 0.1 mol/L phosphate buffer solution(pH=2.0) with a peak-to-peak separation of about 20 mV, revealing a fast electron-transfer process. Moreover, the current response was remarkably increased at PDDA-GS/GCE compared with that at the bare GCE. The electrochemical behaviors of shikonin at the modified electrode were investigated. And the results indicate that the reaction involves the transfer of two electrons, accompanied by two protons and the electrochemical process is a diffusional-controlled electrode process. The electrochemical parameters of shikonin at the modified electrode, the electron-transfer coefficient(α), the electron-transfer number(n) and the electrode reaction rate constant(k s) were calculated to be as 0.53, 2.18 and 3.6 s−1, respectively. Under the optimal conditions, the peak current of differential pulse voltammetry(DPV) increased linearly with the shikonin concentration in a range from 9.472×10-8 mol/L to 3.789×10-6 mol/L with a detection limit of 3.157×10−8 mol/L. The linear regression equation was I p=0.7366c+0.7855(R=0.9978; I p: 10−7 A, c: 10−8 mol/L). In addition, the modified glass carbon electrode also exhibited good stability, selectivity and acceptable reproducibility that could be used for the sensitive, simple and rapid determination of shikonin in real samples. Therefore, the present work offers a new way to broaden the analytical application of graphene in pharmaceutical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Assimopoulou A., Ganzera M., Stuppner H., Papageorgiou V., Biomed. Chromatogr., 2008, 22, 173

    Article  CAS  Google Scholar 

  2. Papageorgiou V., Assimopoulou A., Couladouros E., Hepworth D., Nicolaou K., Angew. Chem. Int. Ed., 1999, 38, 270

    Article  Google Scholar 

  3. Zhang Y., Qian R. Q., Li P. P., Cancer Lett., 2009, 284, 47

    Article  CAS  Google Scholar 

  4. Papageorgiou V. P., Assimopoulou A. N., Couladouros E. A., Hepworth D., Nicolaou K. C., Angew. Chem. Int. Ed. Engl., 1999, 38, 270

    Article  Google Scholar 

  5. Wang W., Zhou J. H., Food Sci., 2002, 23, 56

    Google Scholar 

  6. Singh F., Gao D., Lebwohl M. G., Wei H., Cancer Lett., 2003, 200, 115

    Article  CAS  Google Scholar 

  7. Han J., Weng X., Bi K., Food Chem., 2008, 106, 2

    Article  CAS  Google Scholar 

  8. Sasaki K., Abe H., Yoshizaki F., Biol. Pharm. Bull., 2002, 25, 669

    Article  CAS  Google Scholar 

  9. Chen X., Yang L., Zhang N., Turpin J., Buckheit R., Osterling C., Oppenheim J., Howard O., Antimicrob. Agents Chemother., 2003, 47, 2810

    Article  CAS  Google Scholar 

  10. Yamasaki K., Otake T., Mori H., Morimoto M., Ueba N., Kurokawa Y., Shiota K., Yuge T., J. Pharm. Soc. Jpn., 1993, 113, 818

    CAS  Google Scholar 

  11. Kourounakis A., Assimopoulou A., Papageorgiou V., Gavalas A., Kourounakis P., Arch. Pharm., 2002, 335, 262

    Article  CAS  Google Scholar 

  12. Yang H., Zhou P., Huang H., Chen D., Ma N., Cui Q., Shen S., Dong W., Zhang X., Lian W., Int. J. Cancer, 2009, 124, 2450

    Article  CAS  Google Scholar 

  13. Assimopoulou A., Boskou D., Papageorgiou V., Food Chem., 2004, 87, 433

    Article  CAS  Google Scholar 

  14. Huang Y., Cheng Y., Yu C., Tsai T., Cham T., Colloids Surf. B, 2007, 58, 290

    Article  CAS  Google Scholar 

  15. Hu Y., Jiang Z., Leung K. S. Y., Zhao Z., Anal. Chim. Acta, 2006, 577, 26

    Article  CAS  Google Scholar 

  16. Xiao Y., Wang Y., Gao S. Q., Zhang R., Ren R. B., Li N., Zhang H. Q., J. Chromatogr. B, 2011, 879, 1833

    Article  CAS  Google Scholar 

  17. Banasri H., Madhushree D. S., Utpal S., J. Chromatogr. B, 2004, 812, 259

    Google Scholar 

  18. Li H., Luo S., Zhou T., Phytother. Res., 1999, 13, 236

    Article  CAS  Google Scholar 

  19. Zhang Y., Li P. P., Pharmazie., 2011, 66, 141

    Google Scholar 

  20. Sharma N., Sharma U. K., Gupta A. P., Devla Sinha A. K., Lal B., Ahuja P. S., J. Sep. Sci., 2009, 32, 3239

    Article  CAS  Google Scholar 

  21. Kang J. W., Lu X. Q., Zeng H. J., Liu H. D., Lu B. Q., Anal. Lett., 2002, 35, 677

    Article  CAS  Google Scholar 

  22. Rodríguez-Fernández T., Ugalde-Saldívar V. M., González I., Escobar L. I., García-Valdés J., Bioelectrochem., 2012, 86, 1

    Article  Google Scholar 

  23. Lichtenstein B. R., Cerda J. F., Koder R. L., Dutton P. L., Chem. Commun., 2009, (8), 168

    Google Scholar 

  24. Chaisuksant R., Voulgaropoulos A., Mellidis A. S., Papageorgiou V. P., Analyst, 1993, 118, 179

    Article  CAS  Google Scholar 

  25. Xia F. N., Farmer D. B., Lin Y. M., Avouris P., Nano Lett., 2010, 10, 715

    Article  CAS  Google Scholar 

  26. Li D., Müller M. B., Gilje S., Kaner R. B., Wallace G. G., Nat. Nanotechnol., 2008, 3, 101

    Article  CAS  Google Scholar 

  27. Geim A. K., Novoselov K. S., Nat. Mater., 2007, 6, 183

    Article  CAS  Google Scholar 

  28. Schedin F., Geim A. K., Morozov S. V., Hill E. W., Blake P., Katsnelson M. I., Novoselov K. S., Nat. Mater., 2007, 6, 652

    Article  CAS  Google Scholar 

  29. Kang X. H., Wang J., Wu H., Aksay I. A., Liu J., Lin Y. H., Biosens. Bioelectron., 2009, 25, 901

    Article  CAS  Google Scholar 

  30. Shang N. G., Papakonstantinou P., McMullan M., Chu M., Sramboulis A., Potenza A., Dhesi S. S., Marchetto H., Adv. Funct. Mater., 2008, 18, 1

    Article  Google Scholar 

  31. Li J., Guo S. J., Zhai Y. M., Wang E. K., Electrochem. Commun., 2009, 11, 1085

    Article  CAS  Google Scholar 

  32. Niyogi S., Bekyarova E., Itkis M. E., McWilliams J. L., Hamon M. A., Haddon R. C., J. Am. Chem. Soc., 2006, 24, 7720

    Article  Google Scholar 

  33. Stankovich S., Piner R. D., Chen X. Q., Wu N. Q., Nguyen S. T., Ruoff R. S., J. Mater. Chem., 2006, 16, 155

    Article  CAS  Google Scholar 

  34. Liu H., Gao J., Xue M. Q., Zhu N., Zhang M. N., Cao T. B., Langmuir, 2009, 25, 12006

    Article  CAS  Google Scholar 

  35. Wang H., Tian H. W., Wang X. W., Qiao L., Wang S. M., Wang X. L., Chem. Res. Chinese Unversities, 2011, 27(5), 857

    CAS  Google Scholar 

  36. Liu K. P., Zhang J. J., Yang G. H., Wang C. M., Zhu J. J., Electrochem. Commun., 2010, 12, 402

    Article  CAS  Google Scholar 

  37. Hummers W. S., Offeman R. E., J. Am. Chem. Soc., 1958, 6, 1339

    Article  Google Scholar 

  38. Shan C. S., Yang H. F., Han D. X., Zhang Q. X., Ivaska A., Niu L., Langmuir, 2009, 25, 12030

    Article  CAS  Google Scholar 

  39. Nethravathi C., Rajamathi M., Carbon, 2008, 46, 1994

    Article  CAS  Google Scholar 

  40. Yang D. Q., Rochette J. F., Sacher E., J. Phys. Chem. B, 2005, 109, 4481

    Article  CAS  Google Scholar 

  41. Stakovich S., Dikin D. A., Piner R. D., Kohlhaas K. A., Kleinhammes A., Jia Y. Y., Wu Y., Nguyen S. T., Ruoff R. S., Carbon, 2007, 45, 1558

    Article  Google Scholar 

  42. Reina A., Jia X. T., Ho J., Nezich D., Son H., Bulovic V., Dresselhaus M.S., Kong J., Nano Lett., 2009, 9, 30

    Article  CAS  Google Scholar 

  43. Berciaud S., Ryu S., Brus L. E., Heinz T. F., Nano Lett., 2009, 9, 341

    Article  Google Scholar 

  44. Ferrari A. C., Meyer J. C., Scardaci V., Casiraghi C., Lazzeri M., Mauri F., Piscanec S., Jiang D., Novoselov K. S., Roth S., Geim A. K., Phy. Rev. Lett., 2006, 97, 187401

    Article  CAS  Google Scholar 

  45. Kudin K. N., Ozbas Schniepp H. C., Prudhomme R. K., Aksay I. A., Car R., Nano Lett., 2008, 8, 36

    Article  CAS  Google Scholar 

  46. Srinivas G., Zhu Y., Piner R., Skipper N., Ellerby M., Ruoff R., Carbon, 2010, 48, 630

    Article  CAS  Google Scholar 

  47. Laviron E., J. Electroanal. Chem., 1979, 101, 19

    Article  CAS  Google Scholar 

  48. Nematollahi D., Shayani-Jam H., Alimoradi M., Niroomand S., Electrochim. Acta, 2009, 54, 7407

    Article  CAS  Google Scholar 

  49. Zare H. R., Sobhani Z., Mazloum-Ardakani M., Sens. Actuators B: Chem., 2007, 126, 641

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fang-di Hu or Chun-ming Wang.

Additional information

Supported by the “Twelfth Five-Year” National Science and Technology Support Program of China(No.2011BAI05B02), the Fundamental Research Funds for the Central Universities of China(No.lzujbky-2011-95), the Project of Science and Technology Agency of Lanzhou City, China(No.2011-1-67) and the Item of Scientific and Technological Research from Gansu Provincal Administration Bureau of Traditional Chinese Medicine, China(No.GZK-2011-73).

Rights and permissions

Reprints and permissions

About this article

Cite this article

An, J., Li, Jp., Chen, Wx. et al. Electrochemical study and application on shikonin at poly(diallyldimethylammonium chloride) functionalized graphene sheets modified glass carbon electrode. Chem. Res. Chin. Univ. 29, 798–805 (2013). https://doi.org/10.1007/s40242-013-2436-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-013-2436-9

Keywords

Navigation