Skip to main content
Log in

Disk-shaped symmetric hexa-substituted triphenylene derivatives: Synthesis, physical properties and self-assembly

  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

A series of triphenylene derivatives with six symmetric substituents was synthesized from hexabromotriphenylene. The synthesis was conducted by six-fold palladium-catalyzed Hagihara-Sonogashira cross- coupling reactions to yield the hexa-alkynyl substituted triphenylene derivatives of HTP1, HTP2, HTP3 and HTP4. The six symmetric substituents can not only endow the triphenylene the longer π-conjugated range, but also increase the solubility of the compounds. Their photophysical, electrochemical, thermal properties were investigated respectively. With the comparison of their properties, the structure-property relationships were established which demonstrated the influences of different substituents on the electronic nature and the mesomorphic phase of these disk-shaped molecules. In addition, with the scanning electron microscopy(SEM) and polarized optical microscopy( POM) characterization, the self-assembly behaviors of the compounds were also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lo S. C., Burn P. L., Chem. Rev., 2007, 107, 1097

    Article  CAS  Google Scholar 

  2. Zhang G. W., Fan Q. L., Huang W., Chem. J. Chinese Universities, 2009, 30(2), 413

    Google Scholar 

  3. Shen J. B., Tong B., Shi J. B., Sun S., Feng X., Zhi J. G., Dong Y. P., Chem. J. Chinese Universities, 2010, 31(8), 1656

    Google Scholar 

  4. Lai W. Y., Zhu R., Fan Q. L., Hou L. T., Cao Y., Huang W., Macromolecules, 2006, 39, 3707

    Article  CAS  Google Scholar 

  5. de Bettignies R., Nicolas Y., Blanchard P., Levillain E., Nunzi J. M., Roncali J., Adv. Mater., 2003, 15, 1939

    Article  Google Scholar 

  6. Ponomarenko S. A., Tatarinova E. A., Muzafarov A. M., Kirchmeyer S., Brassat L., Mourran A., Moeller M., Setayesh S., de Leeuw D., Chem. Mater., 2006, 18, 4101

    Article  CAS  Google Scholar 

  7. Liu F., Lai W. Y., Tang C., Wu H. B., Chen Q. Q., Peng B., Wei W., Huang W., Cao Y., Macromol. Rapid Commun., 2008, 29, 659

    Article  CAS  Google Scholar 

  8. Lai W. Y., He Q. Y., Ma Z., Huang W., Chem. Lett., 2009, 38, 286

    Article  CAS  Google Scholar 

  9. Cremer J., Bauerle P., J. Mater. Chem., 2006, 16, 874

    Article  CAS  Google Scholar 

  10. Kumar S., Chem. Soc. Rev., 2006, 35, 83

    Article  CAS  Google Scholar 

  11. Yang C. C., Chen L., Zhong K. L., Chen T., Jin L. Y., Chem. J. Chinese Universities, 2011, 32(12), 2777

    CAS  Google Scholar 

  12. Zhao H. Y., Chen C., Zhu Y. Z., He L., Zheng J. Y., Chem. J. Chinese Universities, 2010, 31(9), 1805

    CAS  Google Scholar 

  13. Luo J., Zhao B., Chi C. Y., J. Mater. Chem., 2010, 20, 1932

    Article  CAS  Google Scholar 

  14. Sasada Y., Monobe H., Ueda Y., Shimizu Y., Chem. Commun., 2008, 12, 1452

    Article  Google Scholar 

  15. Motoyanagi J., Fukushima T., Aida T., Chem. Commun., 2005, 1, 101

    Article  Google Scholar 

  16. Cammidge A. N., Philos. Trans. R. Soc. London, Ser. A, 2006, 364, 2697

    Article  CAS  Google Scholar 

  17. Cammidge A. N., Gopee H., J. Mater. Chem., 2001, 11, 2773

    Article  CAS  Google Scholar 

  18. Hideyuki M., Soichiro K., Keisuke N., PCT Int. Appl., 2006, 144, 391151

    Google Scholar 

  19. Hoang M. H., Nguyen D. N., Choi D. H., Adv. Nat. Sci.: Nanosci. Nanotechnol., 2011, 2, 035002

    Article  Google Scholar 

  20. Cammidge A. N., Gopee H., Liquid Crystals, 2009, 36(8), 809

    Article  CAS  Google Scholar 

  21. Klaus P., Bernd K., Dirk S., Angewandte Chemie., 1990, 102(2), 200

    Article  Google Scholar 

  22. Breslow R., Jaus B., Kluttz R. Q., Xia C. Z., Tetrahedron, 1982, 38, 863

    Article  CAS  Google Scholar 

  23. Bernhardt S., Kastler M., Enkelmann V., Baumgarten M., Mullen K., Chem. Eur. J., 2006, 12, 6117

    Article  CAS  Google Scholar 

  24. Reichardt C., Chem. Rev., 1994, 94, 2319

    Article  CAS  Google Scholar 

  25. Yang S. W., Elangovan A., Hwang K. C., Ho T. I., J. Phys. Chem. B, 2005, 109, 16628

    Article  CAS  Google Scholar 

  26. Wang D., Michinobu T., J. Polym. Sci. Polym. Chem., 2011, 49, 72

    Article  CAS  Google Scholar 

  27. Fitié C. F. C., Tomatsu I., Byelov D., de Jeu W. H., Sijbesma R. P., Chem. Mater., 2008, 20, 2394

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhou Yang or Huai Yang.

Additional information

Supported by the National Natural Science Fund for Distinguished Young Scholar, China(No.51025313), the National Natural Science Foundation of China(Nos.51103010, 51043012, 51173017, 51143001, 51173003, 50973010), the Beijing Natural Science Foundation, China(No.2122042) and the Fundamental Research Funds for the Central Universities, China( No.FRF-TP-09-010B).

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, D., Mi, Ys., Tang, Jk. et al. Disk-shaped symmetric hexa-substituted triphenylene derivatives: Synthesis, physical properties and self-assembly. Chem. Res. Chin. Univ. 29, 495–499 (2013). https://doi.org/10.1007/s40242-013-2288-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-013-2288-3

Keywords

Navigation