A cost effective SiO2–CaO–Na2O bio-glass derived from bio-waste resources for biomedical applications

Abstract

The present paper describes the in vitro bioactivity, cytocompatibility and degradation performance of SiO2–CaO–Na2O bio-glass synthesized using bio-waste. Egg shells and rice husk ash (RHA) bio-wastes were used as sources of calcium oxide (CaO) and silica (SiO2), respectively. Glass samples were obtained by melt-quenching technique. Bioactivity was studied using in vitro experiments in simulated body fluid (SBF), degradation behaviour was evaluated in Tris–HCl buffer solutions recommended by ISO 10993-14 standards and cytocompatibility was estimated using MTT assay. The formation of hydroxyapatite was characterized by XRD, FTIR and SEM–EDS after soaking the glass samples in SBF solution. XRD confirmed the phase of hydroxyapatite with its standard JCPDS data. FTIR analyses revealed the occurrence of distinctive functional groups related to hydroxyapatite. Surface micrographs showed the agglomerated globular shape morphology of hydroxyapatite, while EDS analysis confirmed the existence of biological elements of apatite such as Ca, P and O. Degradation study results showed that the glass thus prepared has considerable controlled degradation rate. MTT assay revealed the cytocompatibility nature for different dosages (1000–50 μg/mL) of the prepared glass with MG-63 cells. These results perfectly established that egg shells and RHA are potentially beneficial resources for the production of bio-glasses.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Abu R, Yahya R, Neon S (2016) Production of high purity amorphous silica from rice husk. Procedia Chem 19:189–195. https://doi.org/10.1016/j.proche.2016.03.092

    CAS  Article  Google Scholar 

  2. Alshatwi AA, Athinarayanan J, Periasamy VS (2015) Biocompatibility assessment of rice husk-derived biogenic silica nanoparticles for biomedical applications. Mater Sci Eng C47:8–16. https://doi.org/10.1016/j.msec.2014.11.005

    CAS  Article  Google Scholar 

  3. Baino F, Barberi J, Fiume E, Orlygsson G, Massera J, Verne E (2019) Robocasting of bioactive SiO2–P2O5–CaO–MgO–Na2O–K2O glass scaffolds. J Healthc Eng 2019:1–12. https://doi.org/10.1155/2019/5153136

    Article  Google Scholar 

  4. Balasubramanian P, Büttner T, Miguez Pacheco V, Boccaccini AR (2018) Boron-containing bioactive glasses in bone and soft tissue engineering. J Eur Ceram Soc 38:855–869. https://doi.org/10.1016/j.jeurceramsoc.2017.11.001

    CAS  Article  Google Scholar 

  5. Catauro M, Bollino F, Renella RA, Papale F (2015) Sol-gel synthesis of SiO2–CaO–P2O5 glasses: influence of the heat treatment on their bioactivity and biocompatibility. Ceram Int 41:12578–12588. https://doi.org/10.1016/j.ceramint.2015.06.075

    CAS  Article  Google Scholar 

  6. Chen SY, Chou PF, Chan WK, Lin HM (2017) Preparation and characterization of mesoporous bioactive glass from agricultural waste rice husk for targeted anticancer drug delivery. Ceram Int 43:2239–2245. https://doi.org/10.1016/j.ceramint.2016.11.007

    CAS  Article  Google Scholar 

  7. Choudhary R, Venkatraman SK, Chatterjee A, Vecstaudza J, Yáñez-Gascón MJ, Pe´rez-Sa´nchez H, Locs J, Abraham J, Swamiappan S (2019) Biomineralization, antibacterial activity and mechanical properties of biowaste derived diopside nanopowders. Adv Powder Technol 30:1950–1964. https://doi.org/10.1016/j.apt.2019.06.014

    CAS  Article  Google Scholar 

  8. De Bortoli LS, Schabbach LM, Fredel MC, Hotza D, Henriques B (2019) Ecological footprint of biomaterials for implant dentistry: is the metal-free practice an eco-friendly shift? J Clean Prod 213:723–732. https://doi.org/10.1016/j.jclepro.2018.12.189

    CAS  Article  Google Scholar 

  9. EN-ISO-10993–14 (2001) Biological evaluation of medical devices—Part 14: Identification and quantification of degradation products from ceramics. ISO 10993–14, 1st edn. Switzerland

  10. Fernández CA, Martínez CA, Prado MO, Olmedo D, Ozols A (2015) Bone regeneration with Wharton’s jelly-bioceramic-bioglass composite. Procedia Mater Sci 9:205–212. https://doi.org/10.1016/j.mspro.2015.04.026

    CAS  Article  Google Scholar 

  11. Fujibayashi S, Neo M, Kim HM, Kokubo T, Nakamura T (2003) A comparative study between in vivo bone ingrowth and in vitro apatite formation on Na2O–CaO–SiO2 glasses. Biomaterials 24:1349–1356. https://doi.org/10.1016/S0142-9612(02)00511-2

    CAS  Article  Google Scholar 

  12. Galow AM, Rebl A, Koczan D, Bonk SM, Baumann W, Gimsa J (2017) Increased osteoblast viability at alkaline pH in vitro provides a new perspective on bone regeneration. Biochem Biophys Rep 10:17–25. https://doi.org/10.1016/j.bbrep.2017.02.001

    Article  Google Scholar 

  13. Gorustovich AA, Roether JA, Boccaccini AR (2010) Effect of bioactive glasses on angiogenesis: a review of in vitro and in vivo evidences. Tissue Eng Part B Rev 16:199–207. https://doi.org/10.1089/ten.TEB.2009.0416

    CAS  Article  Google Scholar 

  14. Hench LL (2006) The story of Bioglass®. J Mater Sci Mater Med 17:967–978. https://doi.org/10.1007/s10856-006-0432-z

    CAS  Article  Google Scholar 

  15. Hench LL, Splinter RJ, Allen WC, Greenlee TK (1971) Bonding mechanisms at the interface of ceramic prosthetic materials. J Biomed Mater Res 5:117–141. https://doi.org/10.1002/jbm.820050611

    Article  Google Scholar 

  16. Ho WF, Hsu HC, Hsu SK, Hung CW, Wu SC (2013) Calcium phosphate bioceramics synthesized from eggshell powders through a solid state reaction. Ceram Int 39:6467–6473. https://doi.org/10.1016/j.ceramint.2013.01.076

    CAS  Article  Google Scholar 

  17. Hoppe A, Mouriño V, Boccaccini AR (2013) Therapeutic inorganic ions in bioactive glasses to enhance bone formation and beyond. Biomater Sci 1:254–256. https://doi.org/10.1039/C2BM00116K

    CAS  Article  Google Scholar 

  18. Huang W, Day DE, Kittiratanapiboon K, Rahaman MN (2006) Kinetics and mechanisms of the conversion of silicate (45S5), borate, and borosilicate glasses to hydroxyapatite in dilute phosphate solutions. J Mater Sci Mater Med 17:583–596. https://doi.org/10.1007/s10856-006-9220-z

    CAS  Article  Google Scholar 

  19. International Organization for Standardization (2009) Biological evaluation of medical devices - Part 5: Tests for in vitro cytotoxicity. Iso 10993–5, 3rd edn. Switzerland

  20. Jayasree R, Velkumar J, Sampath Kumar TS (2017) Egg shell derived apatite cement for the treatment of angular periodontal defects: a preliminary clinical and radiographic assessment. Dent Oral Craniofacial Res 4:1–4. https://doi.org/10.15761/docr.1000238

    Article  Google Scholar 

  21. Jones JR (2013) Review of bioactive glass: from Hench to hybrids. Acta Biomater 9:4457–4486. https://doi.org/10.1016/j.actbio.2012.08.023

    CAS  Article  Google Scholar 

  22. Jones JR (2015) Reprint of: review of bioactive glass: from Hench to hybrids. Acta Biomater 23:S53–S82. https://doi.org/10.1016/j.actbio.2015.07.019

    Article  Google Scholar 

  23. Kaur G, Pandey OP, Singh K, Homa D, Scott B, Pickrell G (2014) A review of bioactive glasses: their structure, properties, fabrication and apatite formation. J Biomed Mater Res - Part A102:254–274. https://doi.org/10.1002/jbm.a.34690

    CAS  Article  Google Scholar 

  24. Kaur G, Pickrell G, Kimsawatde G, Homa D, Allbee HA, Sriranganathan N (2014) Synthesis, cytotoxicity, and hydroxyapatite formation in 27-Tris-SBF for sol-gel based CaO–P2O5–SiO2–B2O3–ZnO bioactive glasses. Sci Rep 4:4392. https://doi.org/10.1038/srep04392

    CAS  Article  Google Scholar 

  25. Kaur D, Reddy MS, Pandey OP (2020) In-vitro bioactivity of silicate-phosphate glasses using agriculture biomass silica. J Mater Sci Mater Med 31:1–13. https://doi.org/10.1007/s10856-020-06402-9

    CAS  Article  Google Scholar 

  26. Kesavulu CR, Kim HJ, Lee SW, Kaewkhao J, Wantana N, Kaewnuam E, Kothan S, Kaewjaeng S (2017) Spectroscopic investigations of Nd3+ doped gadolinium calcium silica borate glasses for the NIR emission at 1059 nm. J Alloys Compd 695:590–598. https://doi.org/10.1016/j.jallcom.2016.11.002

    CAS  Article  Google Scholar 

  27. Kim H-M, Miyaji F, Kokubo T, Ohtsuki C, Nakamura T (1995) Bioactivity of Na2O–CaO–SiO2 glasses. J Am Ceram Soc 78:2405–2411. https://doi.org/10.1111/j.1151-2916.1995.tb08677.x

    CAS  Article  Google Scholar 

  28. Kokubo T, Takadama H (2006) How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27:2907–2915. https://doi.org/10.1016/j.biomaterials.2006.01.017

    CAS  Article  Google Scholar 

  29. Kokubo T, Kushitani H, Sakka S, Kitsugi T, Yamamum T (1990) Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W. J Biomed Mater Res 24:721–734. https://doi.org/10.1002/jbm.820240607

    CAS  Article  Google Scholar 

  30. Leenakul W, Tunkasiri T, Tongsiri N, Pengpat K, Ruangsuriya J (2016) Effect of sintering temperature variations on fabrication of 45S5 bioactive glass-ceramics using rice husk as a source for silica. Mater Sci Eng C61:695–704. https://doi.org/10.1016/j.msec.2015.12.029

    CAS  Article  Google Scholar 

  31. Li HC, Wang DG, Chen CZ (2015) Effect of zinc oxide and zirconia on structure, degradability and in vitro bioactivity of wollastonite. Ceram Int 41:10160–10169. https://doi.org/10.1016/j.ceramint.2015.04.117

    CAS  Article  Google Scholar 

  32. Li HC, Wang DG, Chen CZ, Weng F, Shi H (2016) Influence of different amount of Na2O additive on the structure, mechanical properties and degradability of bioactive wollastonite. Ceram Int 42:1439–1445. https://doi.org/10.1016/j.ceramint.2015.09.088

    CAS  Article  Google Scholar 

  33. Liu DM, Yang Q, Troczynski T, Tseng WJ (2002) Structural evolution of sol-gel-derived hydroxyapatite. Biomaterials 23:1679–1687. https://doi.org/10.1016/S0142-9612(01)00295-2

    CAS  Article  Google Scholar 

  34. Miguez-Pacheco V, Hench LL, Boccaccini AR (2015) Bioactive glasses beyond bone and teeth: emerging applications in contact with soft tissues. Acta Biomater 13:1–15. https://doi.org/10.1016/j.actbio.2014.11.004

    CAS  Article  Google Scholar 

  35. Naghizadeh F, Abdul Kadir MR, Doostmohammadi A, Roozbahani F, Iqbal N, Taheri MM, Naveen SV, Kamarul T (2015) Rice husk derived bioactive glass-ceramic as a functional bioceramic: Synthesis, characterization and biological testing. J Non Cryst Solids 427:54–61. https://doi.org/10.1016/j.jnoncrysol.2015.07.017

    CAS  Article  Google Scholar 

  36. Nayak JP, Kumar S, Bera J (2010) Sol-gel synthesis of bioglass-ceramics using rice husk ash as a source for silica and its characterization. J Non Cryst Solids 356:1447–1451. https://doi.org/10.1016/j.jnoncrysol.2010.04.041

    CAS  Article  Google Scholar 

  37. Ni S, Du R, Ni S (2012) The influence of Na and Ti on the in vitro degradation and bioactivity in 58S sol-gel bioactive glass. Adv Mater Sci Eng 2012:1–7. https://doi.org/10.1155/2012/730810

    CAS  Article  Google Scholar 

  38. Ohshima Y, Takada D, Namai S, Sawai J, Kikuchi M, Hotta M (2015) Antimicrobial characteristics of heated eggshell powder. Biocontrol Sci 20:239–246. https://doi.org/10.4265/bio.20.239

    CAS  Article  Google Scholar 

  39. Palakurthy S, Venu Gopal Reddy K, Samudrala RK, Abdul Azeem P (2019) In vitro bioactivity and degradation behaviour of β-wollastonite derived from natural waste. Mater Sci Eng C 98:109–117. https://doi.org/10.1016/j.msec.2018.12.101

    CAS  Article  Google Scholar 

  40. Rahaman MN, Day DE, Sonny Bal B, Fu Q, Jung SB, Bonewald LF, Tomsia AP (2011) Bioactive glass in tissue engineering. Acta Biomater 7:2355–2373. https://doi.org/10.1016/j.actbio.2011.03.016

    CAS  Article  Google Scholar 

  41. Sampath Kumar TS (2016) Value added bioceramics: a review of the developments and progress in India. KEM 696:3–8. https://doi.org/10.4028/www.scientific.net/KEM.696.3

    Article  Google Scholar 

  42. Samudrala R, Reddy GVN, Manavathi B, Azeem PA (2016) Synthesis, characterization and cytocompatibility of ZrO2 doped borosilicate bioglasses. J Non Cryst Solids 447:150–155. https://doi.org/10.1016/j.jnoncrysol.2016.05.001

    CAS  Article  Google Scholar 

  43. Samudrala R, Abdul Azeem P, Penugurti V, Manavathi B (2017) Cytocompatibility studies of titania-doped calcium borosilicate bioactive glasses in-vitro. Mater Sci Eng C 77:772–779. https://doi.org/10.1016/j.msec.2017.03.245

    CAS  Article  Google Scholar 

  44. Sasikumar S, Vijayaraghavan R (2010) Synthesis and characterization of bioceramic calcium phosphates by rapid combustion synthesis. J Mater Sci Technol 26:1114–1118. https://doi.org/10.1016/S1005-0302(11)60010-8

    CAS  Article  Google Scholar 

  45. Vallet-Regí M, Ruiz-Hernández E (2011) Bioceramics: from bone regeneration to cancer nanomedicine. Adv Mater 23:5177–5218. https://doi.org/10.1002/adma.201101586

    CAS  Article  Google Scholar 

  46. Verné E, Bona E, Bellosi A, Brovarone CV, Appendino P (2001) Na2O–CaO–SiO2 glass-ceramic matrix biocomposites. J Mater Sci 36:2801–2807. https://doi.org/10.1023/A:1017933401325

    Article  Google Scholar 

  47. Vichaphund S, Kitiwan M, Atong D, Thavorniti P (2011) Microwave synthesis of wollastonite powder from eggshells. J Eur Ceram Soc 31:2435–2440. https://doi.org/10.1016/j.jeurceramsoc.2011.02.026

    CAS  Article  Google Scholar 

  48. Xu C, Nasrollahzadeh M, Selva M, Issaabadi Z, Luque R (2019) Waste-to-wealth: biowaste valorization into valuable bio(nano)materials. Chem Soc Rev 48:4791–4822. https://doi.org/10.1039/c8cs00543e

    CAS  Article  Google Scholar 

  49. Yang X, Zhang L, Chen X, Sun X, Yang G, Guo X, Yang H, Gao C, Gou Z (2012) Incorporation of B2O3 in CaO-SiO2-P2O5 bioactive glass system for improving strength of low-temperature co-fired porous glass ceramics. J Non Cryst Solids 358:1171–1179. https://doi.org/10.1016/j.jnoncrysol.2012.02.005

    CAS  Article  Google Scholar 

  50. Yucel S, Özçimen D, Terziǒglu P, Acar S, Yaman C (2013) Preparation of melt derived 45S5 bioactive glass from rice hull ash and its characterization. Adv Sci Lett 19:3477–3481. https://doi.org/10.1166/asl.2013.5228

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank MHRD & Science and Engineering Research Board, India for financial assistance (Ref: Letter No. EMR/2016/006870). We also thank the Director, National Institute of Technology, Warangal for providing us with facilities to carrying out the experiments.

Funding

This study was funded by Science and Engineering Research Board, India (Grant number EMR/2016/006870).

Author information

Affiliations

Authors

Corresponding author

Correspondence to P. Abdul Azeem.

Ethics declarations

Conflict of interest

The author P. Abdul Azeem declares that he has no conflict of interest. The co-author Palakurthy Srinath declares that he has no conflict of interest. The co-author K. Venugopal reddy declares that he has no conflict of interest. The co-author Sushil Patel declares that he has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Palakurthy, S., Reddy, K.V., Patel, S. et al. A cost effective SiO2–CaO–Na2O bio-glass derived from bio-waste resources for biomedical applications. Prog Biomater (2020). https://doi.org/10.1007/s40204-020-00145-0

Download citation

Keywords

  • Bio-glass
  • Bioactivity
  • Cytocompatibility
  • Biomedical applications