Nanoscale mechanical properties of chitosan hydrogels as revealed by AFM

Abstract

In the context of tissue engineering, chitosan hydrogels are attractive biomaterials because they represent a family of natural polymers exhibiting several suitable features (cytocompatibility, bioresorbability, wound healing, bacteriostatic and fungistatic properties, structural similarity with glycosaminoglycans), and tunable mechanical properties. Optimizing the design of these biomaterials requires fine knowledge of its physical characteristics prior to assessment of the cell–biomaterial interactions. In this work, using atomic force microscopy (AFM), we report a characterization of mechanical and topographical properties at the submicron range of chitosan hydrogels, depending on physico-chemical parameters such as their polymer concentration (1.5%, 2.5% and 3.5%), their degree of acetylation (4% and 38.5%), and the conditions of the gelation process. Well-known polyacrylamide gels were used to validate the methodology approach for the determination and analysis of elastic modulus (i.e., Young’s modulus) distribution at the gel surface. We present elastic modulus distribution and topographical and stiffness maps for different chitosan hydrogels. For each chitosan hydrogel formulation, AFM analyses reveal a specific asymmetric elastic modulus distribution that constitutes a useful hallmark for chitosan hydrogel characterization. Our results regarding the local mechanical properties and the topography of chitosan hydrogels initiate new possibilities for an interpretation of the behavior of cells in contact with such soft materials.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Abidine Y, Laurent VM, Michel R, Duperray A, Palade LI, Verdier C (2015) Physical properties of polyacrylamide gels probed by AFM and rheology. EPL (Europhys Lett) 109:38003. https://doi.org/10.1209/0295-5075/109/38003

    CAS  Article  Google Scholar 

  2. Adibnia V, Hill RJ (2016) Universal aspects of hydrogel gelation kinetics, percolation and viscoelasticity from PA-hydrogel rheology. J Rheol. https://doi.org/10.1122/1.4948428

    Article  Google Scholar 

  3. Alcaraz J, Buscemi L, Grabulosa M, Trepat X, Fabry B, Farre R, Navajas D (2003) Microrheology of human lung epithelial cells measured by atomic force microscopy. Biophys J 84:2071–2079. https://doi.org/10.1016/S0006-3495(03)75014-0

    CAS  Article  Google Scholar 

  4. Aussel A, Thébaud NB, Bérard X, Brizzi V, Delmond S, Bareille R, Siadous R, James C, Ripoche J, Durand M, Montembault A, Burdin B, Letourneur D, L’Heureux N, David L, Bordenave L (2017) Chitosan-based hydrogels for developing a small-diameter vascular graft: in vitro and in vivo evaluation. Biomed Mater 12:065003. https://doi.org/10.1088/1748-605X/aa78d0

    CAS  Article  Google Scholar 

  5. Becerra J, Sudre G, Royaud I, Montserret R, Verrier B, Rochas C, Delair T, David L (2017) Tuning the hydrophilic/hydrophobic balance to control the structure of chitosan films and their protein release behavior. AAPS Pharm Sci Tech 18:1070–1083. https://doi.org/10.1208/s12249-016-0678-9

    CAS  Article  Google Scholar 

  6. Bilodeau GG (1992) Regular pyramid punch problem. J Appl Mech 59:519–523. https://doi.org/10.1115/1.2893754

    Article  Google Scholar 

  7. Chedly J, Soares S, Montembault A, von Boxberg Y, Veron-Ravaille M, Mouffle C, Benassy MN, Taxi J, David L, Nothias F (2017) Physical chitosan microhydrogels as scaffolds for spinal cord injury restoration and axon regeneration. Biomaterials 138:91–107. https://doi.org/10.1016/j.biomaterials.2017.05.024

    CAS  Article  Google Scholar 

  8. Crini G, Badot PM, Guibal E (2007) Chitine et chitosane: du biopolymère à l’application. Presses Univ, Franche-Comté

    Google Scholar 

  9. Denisin AK, Pruitt BL (2016) Tuning the range of polyacrylamide gel stiffness for mechanobiology applications. ACS Appl Mater Interfaces 8:21893–21902. https://doi.org/10.1021/acsami.5b09344

    CAS  Article  Google Scholar 

  10. Dokukin M, Sokolov I (2015) High-resolution high-speed dynamic mechanical spectroscopy of cells and other soft materials with the help of atomic force microscopy. Sci Rep 5:12630. https://doi.org/10.1038/srep12630

    CAS  Article  Google Scholar 

  11. Elosegui-Artola A, Bazellières E, Allen MD, Andreu I, Oria R, Sunyer R, Gomm JJ, Marshall JF, Jones JL, Trepat X, Roca-Cusachs P (2014) Rigidity sensing and adaptation through regulation of integrin types. Nat Mater 13:631–637. https://doi.org/10.1038/nmat3960

    CAS  Article  Google Scholar 

  12. Enache AA, David L, Puaux J-P, Banu I, Bozga G (2018) Kinetics of chitosan coagulation from aqueous solutions. J Appl Polym Sci 135:46062. https://doi.org/10.1002/app.46062

    CAS  Article  Google Scholar 

  13. Fereol S, Fodil R (2017) Effect of cholesterol depletion on the viscoelastic properties of alveolar epithelial cells assessed by atomic force microscopy in large deformation. Revue de composites et des matréiaux avancés 28:57–72. https://doi.org/10.3166/rcma.2017.00004

    Article  Google Scholar 

  14. Fereol S, Fodil R, Laurent VM, Balland M, Louis B, Pelle G, Henon S, Planus E, Isabey D (2009) Prestress and adhesion site dynamics control cell sensitivity to extracellular stiffness. Biophys J 96:2009–2022

    CAS  Article  Google Scholar 

  15. Féréol S, Fodil R, Labat B, Galiacy S, Laurent VM, Louis B, Isabey D, Planus E (2006) Sensitivity of alveolar macrophages to substrate mechanical and adhesive properties. Cell Motil Cytoskelet 63:321–340

    Article  Google Scholar 

  16. Fiamingo A, Montembault A, Boitard SE, Naemetalla H, Agbulut O, Delair T, Campana-Filho SP, Menasche P, David L (2016) Chitosan hydrogels for the regeneration of infarcted myocardium: preparation, physicochemical characterization, and biological evaluation. Biomacromol 17:1662–1672. https://doi.org/10.1021/acs.biomac.6b00075

    CAS  Article  Google Scholar 

  17. Glass KA, Link JM, Brunger JM, Moutos FT, Gersbach CA, Guilak F (2014) Tissue-engineered cartilage with inducible and tunable immunomodulatory properties. Biomaterials. https://doi.org/10.1016/j.biomaterials.2014.03.073

    Article  Google Scholar 

  18. Gross W, Kress H (2017) Simultaneous measurement of the Young’s modulus and the Poisson ratio of thin elastic layers. Soft Matter 13:1048–1055. https://doi.org/10.1039/C6SM02470J

    CAS  Article  Google Scholar 

  19. Gutiérrez TJ (2017) Chitosan applications for the food industry. Chitosan. https://doi.org/10.1002/9781119364849.ch8

    Article  Google Scholar 

  20. Hirai AOH, Nakajima A (1991) Determination of degree of deacetylation of chitosan by 1H NMR spectroscopy. Polym Bull 26:87–94. https://doi.org/10.1007/BF00299352

    CAS  Article  Google Scholar 

  21. Hutter JLBJ (1993) Characterization of atomic-force microscope tips. Rev Sci Instrum 64:1868–1873

    CAS  Article  Google Scholar 

  22. Kim IY, Seo SJ, Moon HS, Yoo MK, Park IY, Kim BC, Cho CS (2008) Chitosan and its derivatives for tissue engineering applications. Biotechnol Adv 26:1–21. https://doi.org/10.1016/j.biotechadv.2007.07.009

    CAS  Article  Google Scholar 

  23. Kumar P (2018) Future biomaterials for enhanced cell–substrate communication in spinal cord injury intervention. Future Sci OA 4:FSO68. https://doi.org/10.4155/fsoa-2017-0130

    CAS  Article  Google Scholar 

  24. Ladoux B, Nicolas A (2012) Physically based principles of cell adhesion mechanosensitivity in tissues. Rep Prog Phys 75:116601

    Article  Google Scholar 

  25. Lamarque G, Lucas JM, Viton C, Domard A (2005) Physicochemical behavior of homogeneous series of acetylated chitosans in aqueous solution: role of various structural parameters. Biomacromol 6:131–142. https://doi.org/10.1021/bm0496357

    CAS  Article  Google Scholar 

  26. Lee JH (2018) Injectable hydrogels delivering therapeutic agents for disease treatment and tissue engineering. Biomater Res 22:27. https://doi.org/10.1186/s40824-018-0138-6

    CAS  Article  Google Scholar 

  27. Li X, Katsanevakisa E, Liu X, Zhanga N (2012) Engineering neural stem cell fates with hydrogel design for central nervous system regeneration. Prog Polym Sci 37:1105–1129

    CAS  Article  Google Scholar 

  28. López-Velázquez JC et al (2019) Gelatin–chitosan—PVA hydrogels and their application in agriculture. J Chem Technol Biotechnol 94:3495–3504. https://doi.org/10.1002/jctb.5961

    CAS  Article  Google Scholar 

  29. Mathworks (2020). https://it.mathworks.com/help/stats/fitdist.html

  30. Meco E, Lampe KJ (2018) Microscale architecture in biomaterial scaffolds for spatial control of neural cell behavior. Front Mater. https://doi.org/10.3389/fmats.2018.00002

    Article  Google Scholar 

  31. Medtronic (2017) Chitosan as a biomaterial. https://www.medtronic.com/se-sv/healthcare-professionals/products/ear-nose-throat/bio-packing/bio-nasal-packing/novashield.html. Accessed 2017.

  32. Mohammadzadeh Pakdel P, Peighambardoust SJ (2018) Review on recent progress in chitosan-based hydrogels for wastewater treatment application. Carbohydr Polym 201:264–279. https://doi.org/10.1016/j.carbpol.2018.08.070

    CAS  Article  Google Scholar 

  33. Montembault A, Viton C, Domard A (2005b) Rheometric study of the gelation of chitosan in aqueous solution without cross-linking agent. Biomacromol 6:653–662. https://doi.org/10.1021/bm049593m

    CAS  Article  Google Scholar 

  34. Montembault A, Viton C, Domard A (2005a) Rheometric study of the gelation of chitosan in a hydroalcoholic medium. Biomaterials 26:1633–1643. https://doi.org/10.1016/j.biomaterials.2004.06.029

    CAS  Article  Google Scholar 

  35. Montembault A, Tahiri K, Korwin-Zmijowska C, Chevalier X, Corvol MT, Domard A (2006) A material decoy of biological media based on chitosan physical hydrogels: application to cartilage tissue engineering. Biochimie 88:551–564. https://doi.org/10.1016/j.biochi.2006.03.002

    CAS  Article  Google Scholar 

  36. Notbohm J, Poon B, Ravichandran G (2012) Analysis of nanoindentation of soft materials with an atomic force microscope. J Mater Res 27:229–237. https://doi.org/10.1557/jmr.2011.252

    CAS  Article  Google Scholar 

  37. Novak ML, Koh TJ (2013) Phenotypic transitions of macrophages orchestrate tissue repair. Am J Pathol 183:1352–1363. https://doi.org/10.1016/j.ajpath.2013.06.034

    CAS  Article  Google Scholar 

  38. Oyen ML (2014) Mechanical characterisation of hydrogel materials. Int Mater Rev 59:44–59. https://doi.org/10.1179/1743280413Y.0000000022

    CAS  Article  Google Scholar 

  39. Perrard MH, Sereni N, Schluth-Bolard C, Blondet A, d’Estaing SG, Plotton I, Morel-Journel N, Lejeune H, David L, Durand P (2016) Complete human and rat ex vivo spermatogenesis from fresh or frozen testicular tissue. Biol Reprod 95:89. https://doi.org/10.1095/biolreprod.116.142802

    CAS  Article  Google Scholar 

  40. Piner RD, Hong S, Mirkin CA (1999) Improved Imaging of soft materials with modified AFM tips. Langmuir 15:5457–5460. https://doi.org/10.1021/la990408d

    CAS  Article  Google Scholar 

  41. Popa-Nita S, Rochas C, David L, Domard A (2009) Structure of natural polyelectrolyte solutions: role of the hydrophilic/hydrophobic interaction balance. Langmuir 25:6460–6468. https://doi.org/10.1021/la900061n

    CAS  Article  Google Scholar 

  42. Popa-Nita S, Alcouffe P, Rochas C, David L, Domard A (2010) Continuum of structural organization from chitosan solutions to derived physical forms. Biomacromol 11:6–12. https://doi.org/10.1021/bm9012138

    CAS  Article  Google Scholar 

  43. Rami L, Malaise S, Delmond S, Fricain J-C, Siadous R, Schlaubitz S, Laurichesse E, Amédée J, Montembault A, David L, Bordenave L (2014) Physicochemical modulation of chitosan-based hydrogels induces different biological responses: interest for tissue engineering. J Biomed Mater Res Part A 102A:3666–3676. https://doi.org/10.1002/jbm.a.35035

    CAS  Article  Google Scholar 

  44. Reuss A (1929) Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle. ZAMM J Appl Math Mech Zeitschrift für Angewandte Mathematik und Mechanik 9:49–58. https://doi.org/10.1002/zamm.19290090104

    CAS  Article  Google Scholar 

  45. Schatz C, Viton C, Delair T, Pichot C, Domard A (2003) Typical physicochemical behaviors of chitosan in aqueous solution. Biomacromol 4:641–648. https://doi.org/10.1021/bm025724c

    CAS  Article  Google Scholar 

  46. Schillers H et al (2017) Standardized nanomechanical atomic force microscopy procedure (SNAP) for measuring soft and biological samples. Sci Rep 7:5117. https://doi.org/10.1038/s41598-017-05383-0

    CAS  Article  Google Scholar 

  47. Sereni N, Enache A, Sudre G, Montembault A, Rochas C, Durand P, Perrard MH, Bozga G, Puaux JP, Delair T, David L (2017) Dynamic structuration of physical chitosan. Hydrogels Langmuir 33:12697–12707. https://doi.org/10.1021/acs.langmuir.7b02997

    CAS  Article  Google Scholar 

  48. Skoog SA, Kumar G, Narayan RJ, Goering PL (2018) Biological responses to immobilized microscale and nanoscale surface topographies. Pharmacol Ther 182:33–55. https://doi.org/10.1016/j.pharmthera.2017.07.009

    CAS  Article  Google Scholar 

  49. Sridharan R, Cavanagh B, Cameron AR, Kelly DJ, O’Brien FJ (2019) Material stiffness influences the polarization state, function and migration mode of macrophages. Acta Biomater 89:47–59. https://doi.org/10.1016/j.actbio.2019.02.048

    CAS  Article  Google Scholar 

  50. Vachoud L, Zydowicz N, Domard A (1997) Formation and characterisation of a physical chitin gel. Carbohydr Res 302:169–177. https://doi.org/10.1016/S0008-6215(97)00126-2

    CAS  Article  Google Scholar 

  51. Vasconcelos DP, Fonseca AC, Costa M, Amaral IF, Barbosa MA, Aguas AP, Barbosa JN (2013) Macrophage polarization following chitosan implantation. Biomaterials 34:9952–9959. https://doi.org/10.1016/j.biomaterials.2013.09.012

    CAS  Article  Google Scholar 

  52. Yang TL (2011) Chitin-based materials in tissue engineering: applications in soft tissue and epithelial organ. Int J Mol Sci 12:1936–1963. https://doi.org/10.3390/ijms12031936

    CAS  Article  Google Scholar 

  53. Zhou G, Groth T (2018) Host responses to biomaterials and anti-inflammatory design-a brief review. Macromol Biosci 18:e1800112. https://doi.org/10.1002/mabi.201800112

    CAS  Article  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge the « Ministère de l'Enseignement Supérieur et de la Recherche Scientifique » of Algeria for PhD funding attributed to AB, Satt-Lutech (financial support for MV salary) and Prof. Hugues Talbot, Université Paris-Saclay, for the helpful discussions.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to R. Fodil or S. Féréol.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research resource identifiers (RRID)

Software: MATLAB, RRID:SCR_001622. Software: AMIRA 5.2, Advanced 3D Visualization and Volume Modeling, RRID:SCR_007353.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ben Bouali, A., Montembault, A., David, L. et al. Nanoscale mechanical properties of chitosan hydrogels as revealed by AFM. Prog Biomater (2020). https://doi.org/10.1007/s40204-020-00141-4

Download citation

Keywords

  • Atomic force microscopy
  • Chitosan hydrogel gelation
  • Young’s modulus distribution