Hydrogel scaffolds with elasticity-mimicking embryonic substrates promote cardiac cellular network formation

Abstract

Hydrogels are a class of biomaterials used for a wide range of biomedical applications, including as a three-dimensional (3D) scaffold for cell culture that mimics the extracellular matrix (ECM) of native tissues. To understand the role of the ECM in the modulation of cardiac cell function, alginate was used to fabricate crosslinked gels with stiffness values that resembled embryonic (2.66 ± 0.84 kPa), physiologic (8.98 ± 1.29 kPa) and fibrotic (18.27 ± 3.17 kPa) cardiac tissues. The average pore diameter and hydrogel swelling were seen to decrease with increasing substrate stiffness. Cardiomyocytes cultured within soft embryonic gels demonstrated enhanced cell spreading, elongation, and network formation, while a progressive increase in gel stiffness diminished these behaviors. Cell viability decreased with increasing hydrogel stiffness. Furthermore, cells in fibrotic gels showed enhanced protein expression of the characteristic cardiac stress biomarker, Troponin-I, while reduced protein expression of the cardiac gap junction protein, Connexin-43, in comparison to cells within embryonic gels. The results from this study demonstrate the role that 3D substrate stiffness has on cardiac tissue formation and its implications in the development of complex matrix remodeling-based conditions, such as myocardial fibrosis.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Alvarez-Primo F, Anil Kumar S, Manciu FS, Joddar B (2019) Fabrication of surfactant-dispersed HiPco single-walled carbon nanotube-based alginate hydrogel composites as cellular products. Int J Mol Sci 20:4802. https://doi.org/10.3390/ijms20194802

    CAS  Article  Google Scholar 

  2. Andersen T, Auk-Emblem P, Dornish M (2015) 3D cell culture in alginate hydrogels. Microarrays 4:133–161. https://doi.org/10.3390/microarrays4020133

    CAS  Article  Google Scholar 

  3. Anil Kumar S, Matthew Alonzo M, Allen SC, Abelseth L, Thakur V, Akimoto J, Ito Y, Willerth S, Suggs L, Chattopadhyay M, Joddar B (2019a) A visible light-cross-linkable, fibrin–gelatin-based bioprinted construct with human cardiomyocytes and fibroblasts. ACS Biomater Sci Eng 5:4551–4563. https://doi.org/10.1021/acsbiomaterials.9b00505

    CAS  Article  Google Scholar 

  4. Anil Kumar S, Allen SC, Tasnim N, Akter T, Shinhye Park S, Kumar A, Chattopadhyay M, Ito Y, Suggs LJ, Joddar B (2019b) The applicability of furfuryl-gelatin as a novel bioink for tissue engineering applications. J Biomed Mater Res Part B Appl Biomater 107(2):314–323. https://doi.org/10.1002/jbm.b.34

    CAS  Article  Google Scholar 

  5. Annabi N, Mithieux SM, Weiss AS, Dehghani F (2010) Cross-linked open-pore elastic hydrogels based ontropoelastin, elastin and high pressure CO2. Biomaterials 31:1655–1665. https://doi.org/10.1016/j.biomaterials.2009.11.051

    CAS  Article  Google Scholar 

  6. Babiker NE, Gassum A, Abdelraheem NE, Arbab MAR, Aldeaf SAH, El-Sheikh MAA, Musa HH (2017) The progress of stem cells in the treatment of diabetes mellitus type 1. Prog Stem Cell 4:175–188. https://doi.org/10.15419/psc.v4i01.184

    Article  Google Scholar 

  7. Cao M, Wang Y, Hu X, Gong H, Li R, Cox H, Zhang J, Waigh TA, Xu H, Lu JR (2019) Reversible thermoresponsive peptide–PNIPAM hydrogels for controlled drug delivery. Biomacromol 20:3601–3610. https://doi.org/10.1021/acs.biomac.9b01009

    CAS  Article  Google Scholar 

  8. Chen F-M, Liu X (2016) Advancing biomaterials of human origin for tissue engineering. Prog Polym Sci 53:86–168. https://doi.org/10.1016/j.progpolymsci.2015.02.004

    CAS  Article  Google Scholar 

  9. Cleetus CM, Primo FA, Fregoso G, Raveendran NL, Noveron JC, Spencer CT, Ramana CH, Joddar B (2020) Alginate hydrogels with embedded ZnO nanoparticles for wound healing therapy. Int J Nanomed 15:5097–5111. https://doi.org/10.2147/IJN.S255937

    Article  Google Scholar 

  10. Coakley MF, Hurt DE, Weber N, Mtingwa M, Fincher EC, Alekseyev V, Chen DT, Yun A, Gizaw M, Swan J, Yoo TS, Huyen Y (2014) The NIH 3D print exchange: a public resource for bioscientific and biomedical 3D prints. 3D Print Addit Manuf 1:137–140. https://doi.org/10.1089/3dp.2014.1503

    Article  Google Scholar 

  11. Cui H, Nowicki M, Fisher JP, Zhang LG (2017) 3D bioprinting for organ regeneration. Adv Healthc Mater 6:1601118. https://doi.org/10.1002/adhm.201601118

    CAS  Article  Google Scholar 

  12. Davidson MM, Nesti C, Palenzuela L, Walker WF, Hernandez E, Protas L, Hirano M, Issac ND (2005) Novel cell lines derived from adult human ventricular cardiomyocytes. J Mol Cell Cardiol 39:133–147. https://doi.org/10.1016/j.yjmcc.2005.03.003

    CAS  Article  Google Scholar 

  13. Delaney JT, Liberski AR, Perelaer J, Schubert US (2010) Reactive inkjet printing of calcium alginate hydrogel porogens—a new strategy to open-pore structured matrices with controlled geometry. Soft Matter 6:866–869. https://doi.org/10.1039/B922888H

    CAS  Article  Google Scholar 

  14. Dewavrin J-Y, Hamzavi N, Shim V, Raghunath M (2014) Tuning the architecture of three-dimensional collagen hydrogels by physiological macromolecular crowding. Acta Biomater 10:4351–4359. https://doi.org/10.1016/j.actbio.2014.06.006

    CAS  Article  Google Scholar 

  15. Drury JL, Mooney DJ (2003) Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24:4337–4351. https://doi.org/10.1016/S0142-9612(03)00340-5

    CAS  Article  Google Scholar 

  16. Engler AJ, Carag-Krieger C, Johnson CP, Raab M, Tang HY, Speicher DW, Sanger JW, Sanger JM, Discher DE (2008) Embryonic cardiomyocytes beat best on a matrix with heart-like elasticity: scar-like rigidity inhibits beating. J Cell Sci 121:3794–3802. https://doi.org/10.1242/jcs.029678

    CAS  Article  Google Scholar 

  17. Farokhi M, Mottaghitalab F, Shokrgozar ML, Ou KL, Mao C, Hosseinkhani H (2016) Importance of dual delivery systems for bone tissue engineering. J Control Release 225:152–169. https://doi.org/10.1016/j.jconrel.2016.01.033

    CAS  Article  Google Scholar 

  18. Ghodsizadeh A, Hosseinkhani H, Piryaei A, Pournasr B, Najarasl M, Hiraoka Y, Baharvand H (2014) Galactosylated collagen matrix enhanced in vitro maturation of human embryonic stem cell-derived hepatocyte-like cells. Biotechnol Lett 36(5):1095–1106. https://doi.org/10.1007/s10529-014-1454-0

    CAS  Article  Google Scholar 

  19. Hessel M, Atsma DE, van der Valk EJ, Bax WH, Schalij MJ, van der Laarse A (2008) Release of cardiac troponin I from viable cardiomyocytes is mediated by integrin stimulation. Pflüg Arch Eur J Physiol 455:979–986. https://doi.org/10.1007/s00424-007-0354-8

    CAS  Article  Google Scholar 

  20. Hoffman AS (2012) Hydrogels for biomedical applications. Adv Drug Del Rev 64:18–23. https://doi.org/10.1016/j.addr.2012.09.010

    Article  Google Scholar 

  21. Hosseinkhani H, Hosseinkhani M, Hattori S, Matsouka R, Kawaguchi M (2010) Micro and nano-scale in vitro 3D culture system for cardiac stem cells. J Biomed Mater Res Part A 94(1):1–8. https://doi.org/10.1016/j.matdes.2020.108794

    CAS  Article  Google Scholar 

  22. Huebsch N, Kearney CJ, Zhao X, Kim J, Cezar CA, Suo Z, Mooney DJ (2014) Ultrasound-triggered disruption and self-healing of reversibly cross-linked hydrogels for drug delivery and enhanced chemotherapy. Proc Nat Acad Sci 111(27):9762–9767. https://doi.org/10.1073/pnas.1405469111

    CAS  Article  Google Scholar 

  23. Jacot JG, McCulloch AD, Omens JH (2008) Substrate stiffness affects the functional maturation of neonatal rat ventricular myocytes. Biophys J 95:3479–3487. https://doi.org/10.1529/biophysj.107.124545

    CAS  Article  Google Scholar 

  24. Joddar B, Garcia E, Casas A, Stewart CM (2016) Development of functionalized multi-walled carbon-nanotube-based alginate hydrogels for enabling biomimetic technologies. Sci Rep 6:1–12. https://doi.org/10.1038/srep32456

    CAS  Article  Google Scholar 

  25. Joddar B, Tasnim N, Thakur V, Kumar A, McCallum RW, Chattopadhyay M (2018) Delivery of mesenchymal stem cells from gelatin-alginate hydrogels to stomach lumen for treatment of gastroparesis. Bioengineering 5(1):12. https://doi.org/10.3390/bioengineering5010012

    CAS  Article  Google Scholar 

  26. Kang B, Shin J, Ji Park H, Rhyou C, Kang D, Lee SJ, Yoon YS, Cho SW, Lee H (2018) High-resolution acoustophoretic 3D cell patterning to construct functional collateral cylindroids for ischemia therapy. Nat Commun 9:1–13. https://doi.org/10.1038/s41467-018-07823-5

    CAS  Article  Google Scholar 

  27. Khalaji S, Golshan Ebrahimi N, HosseinkhaniH, (2020) Enhancement of biocompatibility of PVA/HTCC blend polymer with collagen for skin care application. Int J Polym Mater Polym Biomater. https://doi.org/10.1080/00914037.2020.1725761

    Article  Google Scholar 

  28. Khan S, Ranjha NM (2014) Effect of degree of cross-linking on swelling and on drug release of low viscous chitosan/poly(vinyl alcohol) hydrogels. Polym Bull 71:2133–2158. https://doi.org/10.1007/s00289-014-1178-2

    CAS  Article  Google Scholar 

  29. Kusuma S, Shen YI, Hanjaya-Putra D, Mali P, Cheng L, Gerecht S (2013) Self-organized vascular networks from human pluripotent stem cells in a synthetic matrix. Proc Natl Acad Sci 110:12601–12606. https://doi.org/10.1073/pnas.1306562110

    Article  Google Scholar 

  30. Lee KY, Mooney DJ (2001) Hydrogels for tissue engineering. Chem Rev 101:1869–1880. https://doi.org/10.1021/cr000108x

    CAS  Article  Google Scholar 

  31. Lee KY, Mooney DJ (2012) Alginate: properties and biomedical applications. Prog Polym Sci 37:106–126. https://doi.org/10.1016/j.progpolymsci.2011.06.003

    CAS  Article  Google Scholar 

  32. LiZ GJ (2011) Hydrogels for cardiac tissue engineering. Polymers 3:740–761. https://doi.org/10.3390/polym3020740

    CAS  Article  Google Scholar 

  33. Liang J, Huang W, Jiang L, Paul C, Li X, Wang Y (2019) Concise review: reduction of adverse cardiac scarring facilitates pluripotent stem cell-based therapy for myocardial infarction. Stem Cells 37:844–854. https://doi.org/10.1002/stem.3009

    Article  Google Scholar 

  34. Lim F, Sun AM (1980) Microencapsulated islets as bioartificial endocrine pancreas. Science 210:908–910. https://doi.org/10.1126/science.6776628

    CAS  Article  Google Scholar 

  35. Liu Y, Huglin MB (1995) Effective crosslinking densities and elastic moduli of some physically crosslinked hydrogels. Polymer 36:1715–1718. https://doi.org/10.1016/0032-3861(95)99018-P

    CAS  Article  Google Scholar 

  36. Mondal A, Gebeyehu A, Miranda M, Bahadur D, Patel N, Ramakrishnan S, Rishi A, Singh M (2019) Characterization and printability of sodium alginate-gelatin hydrogel for bioprinting NSCLC co-culture. Sci Rep 9:1–12. https://doi.org/10.1038/s41598-019-55034-9

    CAS  Article  Google Scholar 

  37. Narayanaswamy R, Torchilin VP (2019) Hydrogels and their applications in targeted drug delivery. Molecules 24:603. https://doi.org/10.3390/molecules24030603

    CAS  Article  Google Scholar 

  38. Nicodemus GD, Bryant SJ (2008) Cell encapsulation in biodegradable hydrogels for tissue engineering applications. Tissue Eng Part B Rev 14:149–165. https://doi.org/10.1089/ten.teb.2007.0332

    CAS  Article  Google Scholar 

  39. Oh KS, Oh JS, Choi HS, Bae YC (1998) Effect of cross-linking density on swelling behavior of NIPA gel particles. Macromolecules 31:7328–7335. https://doi.org/10.1021/ma971554y

    CAS  Article  Google Scholar 

  40. Pandey P, Hawkws W, Hu J, Megone WV, Gautrot J, Anilkumar N, Zhang M, Hirvonen L, Cox S, Ehler E, Hone J, Sheetz M, Iskatsch T (2018) Cardiomyocytes sense matrix rigidity through a combination of muscle and non-muscle myosin contractions. Dev Cell 44(326–336):e323. https://doi.org/10.1016/j.devcel.2017.12.024

    CAS  Article  Google Scholar 

  41. Qu J, Zhou X, Liang Y, Zhang T, Ma PX, Guo B (2018) Antibacterial adhesive injectable hydrogels with rapid self-healing, extensibility and compressibility as wound dressing for joints skin wound healing. Biomaterials 183:185–199. https://doi.org/10.1016/j.biomaterials.2018.08.044

    CAS  Article  Google Scholar 

  42. Sawyer S, Oest M, Margulies B, Soman P (2016) Behavior of encapsulated saos-2 cells within gelatin methacrylate hydrogels. J Tissue Sci Eng. https://doi.org/10.4172/2157-7552.1000173

    Article  Google Scholar 

  43. Schmitt A, Rodel P, Anamur C, Seeliger C, Imhoff AB, Herbst E, Vogt S, Griensven MV, Winter G, Engert J (2015) Calcium alginate gels as stem cell matrix-making paracrine stem cell activity available for enhanced healing after surgery. PLoS ONE 10:e0118937–e0118937. https://doi.org/10.1371/journal.pone.0118937

    CAS  Article  Google Scholar 

  44. Sharifzadeh G, Hosseinkhani H (2017) Biomolecule-responsive hydrogels in medicine. Adv Healthc Mater 6(24):1700801. https://doi.org/10.1002/adhm.201700801

    CAS  Article  Google Scholar 

  45. Sharma S, Jackson P, Makan J (2004) Cardiac troponins. J Clin Pathol 57:1025–1026. https://doi.org/10.1136/jcp.2003.015420

    CAS  Article  Google Scholar 

  46. Stowers RS, Allen SC, Suggs LJ (2015) Dynamic phototuning of 3D hydrogel stiffness. Proc Natl Acad Sci 112:1953–1958. https://doi.org/10.1073/pnas.1421897112

    CAS  Article  Google Scholar 

  47. Sun J, Tan H (2013) Alginate-based biomaterials for regenerative medicine applications. Materials 6:1285–1309. https://doi.org/10.3390/ma6041285

    CAS  Article  Google Scholar 

  48. Toosi S, Naderi-Meshkin H, Kalalinia F, Hosseinkhani H, Heirani-Tabasi A, Havakhah S, Nekuei S, Jafarian AH, Rezari F, Peivandi MT, Mesgarani H, Behravan J (2019) Bone defect healing is induced by collagen sponge/polyglycolic acid. J Mater Sci Mater Med 30(3):33. https://doi.org/10.1007/s10856-019-6235-9

    CAS  Article  Google Scholar 

  49. Toosi S, Naderi-Meshkin H, Kalalinia F, Peivandi MT, Hosseinkhani H, Bahrami AR, Heirani-Tabasi A, Mirahmadi M, Behravan J (2016) PGA-incorporated collagen: toward a biodegradable composite scaffold for bone-tissue engineering. J Biomed Mater Res Part A 104(8):2020–2028. https://doi.org/10.1002/jbm.a.35736

    CAS  Article  Google Scholar 

  50. Valiente-Alandi I, Schafer AE, Blaxall BC (2016) Extracellular matrix-mediated cellular communication in the heart. J Mol Cell Cardiol 91:228–237. https://doi.org/10.1016/j.yjmcc.2016.01.011

    CAS  Article  Google Scholar 

  51. Wang Z, Mithieux SM, Weiss AS (2019) Fabrication techniques for vascular and vascularized tissue engineering. Adv Healthc Mater 8:1900742. https://doi.org/10.1002/adhm.201900742

    CAS  Article  Google Scholar 

  52. Williams C, Budina E, Stoppel WL, Sulivan KE, Emani S, Emani SM, Black LD (2015) Cardiac extracellular matrix–fibrin hybrid scaffolds with tunable properties for cardiovascular tissue engineering. Acta Biomater 14:84–95. https://doi.org/10.1016/j.actbio.2014.11.035

    CAS  Article  Google Scholar 

  53. Wu SM, Chien KR, Mummery C (2008) Origins and fates of cardiovascular progenitor cells. Cell 132:537–543. https://doi.org/10.1016/j.cell.2008.02.002

    CAS  Article  Google Scholar 

  54. Yang Y, Wang K, Gu X, Leong KW (2017) Biophysical regulation of cell behavior—cross talk between substrate stiffness and nanotopography. Engineering 3:36–54. https://doi.org/10.1016/J.ENG.2017.01.014

    CAS  Article  Google Scholar 

  55. Yildirim ED, Yin X, Nair K, Sun W (2008) Fabrication, characterization, and biocompatibility of single-walled carbon nanotube-reinforced alginate composite scaffolds manufactured using freeform fabrication technique. J Biomed Mater Res Part B Appl Biomater 87:406–414. https://doi.org/10.1002/jbm.b.31118

    CAS  Article  Google Scholar 

  56. You J-O, Rafat M, Ye GJ, Auguste DT (2011) Nanoengineering the heart: conductive scaffolds enhance connexin 43 expression. Nano Lett 11:3643–3648. https://doi.org/10.1021/nl201514a

    CAS  Article  Google Scholar 

Download references

Acknowledgements

Matthew Alonzo acknowledges the Eloise E. and Patrick B. Wieland fellowship at UTEP and the Gates Millennium Scholarship Program. Fabian Alvarez Primo acknowledges the Eloise E. and Patrick B. Wieland fellowship and the Dissertation Completion Fellowship at UTEP. Monica Delgado acknowledges the Gates Millennium Scholarship Program. We acknowledge the technical assistance received from Dr. Armando Varela for kindly assisting us with the confocal microscopy. We are grateful to Moinak Joddar, freshman at UT Cockrell School of Engineering for his help with formatting of the references.

This study was funded by the NIH 1SC2HL134642-01 and NSF (CBET 1927628). The authors also acknowledge support for materials and supplies for this project obtained from NSF-MRI (DMR 1826268). The research reported in this article was also supported by the National Institute of General Medical Sciences of the National Institutes of Health under Linked Award Numbers RL5GM118969, TL4GM118971, and UL1GM118970. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Binata Joddar.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2525 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Alonzo, M., Kumar, S.A., Allen, S. et al. Hydrogel scaffolds with elasticity-mimicking embryonic substrates promote cardiac cellular network formation. Prog Biomater 9, 125–137 (2020). https://doi.org/10.1007/s40204-020-00137-0

Download citation

Keywords

  • Alginate
  • Cardiomyocytes
  • Elastic modulus
  • Cell viability
  • Scaffold stiffness