Skip to main content

Advertisement

Log in

A molecular docking exploration of the large extracellular loop of tetraspanin CD81 with small molecules

  • Original Research
  • Published:
In Silico Pharmacology Aims and scope Submit manuscript

Abstract

Tetraspanin CD81 is a transmembrane protein used as a co-receptor by different viruses and implicated in some cancer and inflammatory diseases. The design of therapeutic small molecules targeting CD81 lags behind monoclonal antibodies and peptides but different synthetic and natural products binding to CD81 have been identified. We have investigated the interaction between synthetic compounds and CD81, considering both the cholesterol-bound full-length receptor and a truncated protein corresponding to the large extracellular loop (LEL) of the tetraspanin. They represent the closed and open conformations of the protein, respectively. Stable complexes were characterized with bi-aryl compounds (notably the quinolinone-benzothiazole 6) and atypical molecules bearing a 1-amino-boraadamantane scaffold well adapted to interact with CD81 (5a-d). In each case, the mode of binding to CD81 was analyzed, the binding sites identified and the molecular contacts determined. The narrow intra-LEL binding site of CD81 can accommodate the elongated bi-aryl 6 but not a series of isosteric compounds with a bis(bicyclic) scaffold. The bora-adamantane derivatives appeared to bind well to CD81, but essentially to the external surface of the protein loop. The binding selectivity of the compounds was assessed comparing binding to the LEL of tetraspanins CD81, CD9 and Tspan15. A net preference for CD81 over CD9 was evidenced, but the LEL of Tspan15 also provided a suitable binding site for the compounds, notably for the bora-adamantane derivatives. This work provides an aid to the identification and design of tetraspanin-binding small molecules, underlining the distinct behavior of the open and closed conformation of the protein for drug binding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

Cpd:

Compound

LEL:

Large extracellular loop

mAb:

Monoclonal antibody

References

  • Agu PC, Afiukwa CA, Orji OU, Ezeh EM, Ofoke IH, Ogbu CO, Ugwuja EI, Aja PM (2023) Molecular docking as a tool for the discovery of molecular targets of nutraceuticals in diseases management. Sci Rep 13:13398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmed W, Neelakanta G, Sultana H (2021) Tetraspanins as potential therapeutic candidates for targeting flaviviruses. Front Immunol 12:630571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anand K, Khan FI, Singh T, Elumalai P, Balakumar C, Premnath D, Lai D, Chuturgoon AA, Saravanan M (2020) Green synthesis, experimental and theoretical studies to discover novel binders of exosomal tetraspanin CD81 protein. ACS Omega 5:17973–17982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bailly C, Thuru X (2023) Targeting of tetraspanin CD81 with monoclonal antibodies and small molecules to combat cancers and viral diseases. Molecules 15:2186

    CAS  Google Scholar 

  • Benayas B, Sastre I, López-Martín S, Oo A, Kim B, Bullido MJ, Aldudo J, Yáñez-Mó M (2020) Tetraspanin CD81 regulates HSV-1 infection. Med Microbiol Immunol 209:489–498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Butterworth RF (2021) Potential for the repurposing of adamantane antivirals for COVID-19. Drugs R D 21:267–272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai S, Deng Y, Peng H, Shen J (2021) Role of tetraspanins in hepatocellular carcinoma. Front Oncol 11:723341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang YA (2003) Boraadamantane compounds for the treatment of pathogenic viruses and other medical applications. Patent US6613507B1 (published 2003–09–02).

  • Chen X, Zhao JC, Shore SG (2013) The roles of dihydrogen bonds in amine borane chemistry. Acc Chem Res 46:2666–2675

    Article  CAS  PubMed  Google Scholar 

  • Cunha ES, Sfriso P, Rojas AL, Roversi P, Hospital A, Orozco M, Abrescia NGA (2017) Mechanism of structural tuning of the hepatitis c virus human cellular receptor CD81 large extracellular loop. Structure 25:53–65

    Article  CAS  PubMed  Google Scholar 

  • Deng Y, Cai S, Shen J, Peng H (2021) Tetraspanins: novel molecular regulators of gastric cancer. Front Oncol 11:702510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dey D, Biswas P, Paul P, Mahmud S, Ema TI, Khan AA, Ahmed SZ, Hasan MM, Saikat ASM, Fatema B, Bibi S, Rahman MA, Kim B (2023) Natural flavonoids effectively block the CD81 receptor of hepatocytes and inhibit HCV infection: a computational drug development approach. Mol Divers 27:1309–1322

    Article  CAS  PubMed  Google Scholar 

  • Fischer A, Smieško M, Sellner M, Lill MA (2021) Decision making in structure-based drug discovery: visual inspection of docking results. J Med Chem 64:2489–2500

    Article  CAS  PubMed  Google Scholar 

  • Florin L, Lang T (2018) Tetraspanin Assemblies in Virus Infection. Front Immunol 9:1140

    Article  PubMed  PubMed Central  Google Scholar 

  • Francoeur PG, Koes DR (2021). SolTranNet-A Machine Learning Tool for Fast Aqueous Solubility Prediction. J Chem Inf Model 61:2530–2536. Correction in J Chem Inf Model 2021; 61:4120–4123.

  • Fujii Y, Arai Y, Nakagawa S, Yamasaki T, Iijima M, Yamada N, Takahashi K, Nakanishi M, Nakanishi T (2022) CD81 inhibition with the cytoplasmic RNA vector producing anti-CD81 antibodies suppresses arthritis in a rat CIA model. Biochem Biophys Res Commun 604:22–29

    Article  CAS  PubMed  Google Scholar 

  • Garcia JC, Justo JF, Machado WVM, Assali LVC (2009) Functionalized adamantane: Building blocks for nanostructure self-assembly. Phys Rev B 80:125421

    Article  Google Scholar 

  • Gill PMW, Ching YL, George MW (2004) EDF2, a density functional for predicting vibrational frequencies. Austral J Chem 57:365–370

    Article  Google Scholar 

  • Harrison N, Koo CZ, Tomlinson MG (2021) Regulation of ADAM10 by the TspanC8 Family of Tetraspanins and Their Therapeutic Potential. Int J Mol Sci 22:6707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasezaki T, Yoshima T, Mattsson M, Särnefält A, Takubo K (2020a) A monoclonal antibody recognizing a new epitope on CD81 inhibits T-cell migration without inducing cytokine production. J Biochem 167:399–409

    Article  CAS  PubMed  Google Scholar 

  • Hasezaki T, Yoshima T, Mine Y (2020b) Anti-CD81 antibodies reduce migration of activated T lymphocytes and attenuate mouse experimental colitis. Sci Rep 10:6969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hinojosa-Nava R, Mejía-Uriarte EV, Vázquez-Olmos AR, Sato-Berrú RY (2023) Study of the first step of hydrogen release in ammonia borane using high-resolution Raman spectroscopy and different heating ramps. Spectrochim Acta A Mol Biomol Spectrosc 284:121776

    Article  CAS  PubMed  Google Scholar 

  • Homans SW (1990) A molecular mechanical force field for the conformational analysis of oligosaccharides: Comparison of theoretical and crystal structures of Man alpha 1–3Man beta 1–4GlcNAc. Biochemistry 29:9110–9118

    Article  CAS  PubMed  Google Scholar 

  • Jang WD, Jang J, Song JS, Ahn S, Oh KS (2023) PredPS: Attention-based graph neural network for predicting stability of compounds in human plasma. Comput Struct Biotechnol J 21:3532–3539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones G, Willett P, Glen RC, Leach AR, Taylor R (1997) Development and validation of a genetic algorithm for flexible docking. J Mol Biol 267:727–748

    Article  CAS  PubMed  Google Scholar 

  • Jorgensen WL, Tirado-Rives J (1996) Monte Carlo versus Molecular Dynamics for conformational sampling. J Phys Chem 100:14508–14513

    Article  CAS  Google Scholar 

  • Jorgensen WL, Tirado-Rives J (2005) Molecular modeling of organic and biomolecular systems using BOSS and MCPRO. J Comput Chem 26:1689–1700

    Article  CAS  PubMed  Google Scholar 

  • Jorgensen WL, Ulmschneider JP, Tirado-Rives J (2004) Free energies of hydration from a generalized Born model and an ALL-atom force field. J Phys Chem B 108:16264–16270

    Article  CAS  Google Scholar 

  • Kang Z, Luo Y, Xiao E, Li Q, Wang L (2023) CD151 and prostate cancer progression: a review of current literature. Asia Pac J Clin Oncol 19:434–438

    Article  PubMed  Google Scholar 

  • Karam J, Blanchet FP, Vivès É, Boisguérin P, Boudehen YM, Kremer L, Daher W (2023) Mycobacterium abscessus alkyl hydroperoxide reductase C promotes cell invasion by binding to tetraspanin CD81. iScience 26:106042.

  • Karam J, Méresse S, Kremer L, Daher W (2020) The roles of tetraspanins in bacterial infections. Cell Microbiol 22:e13260

    Article  CAS  PubMed  Google Scholar 

  • Kitadokoro K, Ponassi M, Galli G, Petracca R, Falugi F, Grandi G, Bolognesi M (2002) Subunit association and conformational flexibility in the head subdomain of human CD81 large extracellular loop. Biol Chem 383:1447–1452

    Article  CAS  PubMed  Google Scholar 

  • Koh HM, Jang BG, Lee DH, Hyun CL (2021) Increased CD9 expression predicts favorable prognosis in human cancers: a systematic review and meta-analysis. Cancer Cell Int 21:472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kontarov NA, Artiushenko SV, Markushin SG, Lotte VD, Bubnov IuN (2010) A study of the interaction of boraadamantane with liposomes. Biofizika 55:269–270

    CAS  PubMed  Google Scholar 

  • Kontarov NA, Pogarskaia IV, Balaev NV, Iuminova NV (2013) Study of surface-active properties antivirials compound 1-boraadamantane for model monomoleculars phosphlipids layers. Biomed Khim 59:519–522

    Article  CAS  PubMed  Google Scholar 

  • Lagant P, Nolde D, Stote R, Vergoten G, Karplus M (2004) Increasing Normal Modes Analysis Accuracy: The SPASIBA Spectroscopic Force Field Introduced into the CHARMM Program. J Phys Chem A 108:4019–4029

    Article  CAS  Google Scholar 

  • Lasswitz L, Zapatero-Belinchón FJ, Moeller R, Hülskötter K, Laurent T, Carlson LA, Goffinet C, Simmons G, Baumgärtner W, Gerold G (2022) The Tetraspanin CD81 Is a Host Factor for Chikungunya Virus Replication. mBio 13:e0073122.

  • Leung KT, Zhang C, Chan KYY, Li K, Cheung JTK, Ng MHL, Zhang XB, Sit T, Lee WYW, Kang W, To KF, Yu JWS, Man TKF, Wang H, Tsang KS, Cheng FWT, Lam GKS, Chow TW, Leung AWK, Leung TF, Yuen PMP, Ng PC, Li CK (2020) CD9 blockade suppresses disease progression of high-risk pediatric B-cell precursor acute lymphoblastic leukemia and enhances chemosensitivity. Leukemia 34:709–720

    Article  CAS  PubMed  Google Scholar 

  • Li B, Li L, Peng Z, Liu D, Si L, Wang J, Yuan B, Huang J, Proksch P, Lin W (2019) Harzianoic acids A and B, new natural scaffolds with inhibitory effects against hepatitis C virus. Bioorg Med Chem 27:560–567

    Article  CAS  PubMed  Google Scholar 

  • Lipper CH, Gabriel KH, Seegar TCM, Dürr KL, Tomlinson MG, Blacklow SC (2022) Crystal structure of the Tspan15 LEL domain reveals a conserved ADAM10 binding site. Structure 30:206–214

    Article  CAS  PubMed  Google Scholar 

  • Ma S, Yang K, Li Z, Li L, Feng Y, Wang X, Wang J, Zhu Z, Wang Z, Wang J, Zhu Y, Liu L (2023) A retro-inverso modified peptide alleviated ovalbumin-induced asthma model by affecting glycerophospholipid and purine metabolism of immune cells. Pulm Pharmacol Ther 78:102185

    Article  CAS  PubMed  Google Scholar 

  • Maigali S, Tawfik HA, Ali M, Soliman F, Mohramb ME, Dondeti MF (2020) Synthesis, molecular docking and antimicrobial activities of 3-formyl-2-(1h)quinolinone schiff base derivatives and 3-(((3-acetylphenyl)imino)- methyl)quinolin-2-(1h)-one chalcone derivatives. Egypt J Chem 63:3903–3914

    Google Scholar 

  • Meziane-Tani M, Lagant P, Semmoud A, Vergoten G (2006) The SPASIBA force field for chondroitin sulfate: vibrational analysis of D-glucuronic and N-acetyl-D-galactosamine 4-sulfate sodium salts. J Phys Chem A 110:11359–11370

    Article  CAS  PubMed  Google Scholar 

  • Mikhailov BM (1983) The chemistry of 1-boraadamantane. Pure Appi Chem 55:1439–1452

    Article  CAS  Google Scholar 

  • Nawwar GAM, Shafik NA (1995) Synthesis of 2-substituted benzothiazoles containing amino acid, imino or heteroaryl moieties with anticipated fungicidal activity. Collect Czech Chem Commun 60:2200–2208

    Article  CAS  Google Scholar 

  • Neese F, Wennmohs F, Becker U, Riplinger C (2020) The ORCA quantum chemistry program package. J Chem Phys 152:224108

    Article  CAS  PubMed  Google Scholar 

  • New C, Lee ZY, Tan KS, Wong AH, Wang Y, Tran T (2021) Tetraspanins: Host Factors in Viral Infections. Int J Mol Sci 22:11609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olaby RA, Azzazy HM, Harris R, Chromy B, Vielmetter J, Balhorn R (2013) Identification of ligands that target the HCV-E2 binding site on CD81. J Comput Aided Mol Des 27:337–346

    Article  CAS  PubMed  Google Scholar 

  • Oosterheert W, Xenaki KT, Neviani V, Pos W, Doulkeridou S, Manshande J, Pearce NM, Kroon-Batenburg LM, Lutz M, van Bergen En Henegouwen PM, Gros P (2020) Implications for tetraspanin-enriched microdomain assembly based on structures of CD9 with EWI-F. Life Sci Alliance 3:e202000883

  • Qian XJ, Jin YS, Chen HS, Xu QQ, Ren H, Zhu SY, Tang HL, Wang Y, Zhao P, Qi ZT, Zhu YZ (2016) Trachelogenin, a novel inhibitor of hepatitis C virus entry through CD81. J Gen Virol 97:1134–1144

    Article  CAS  PubMed  Google Scholar 

  • Qiao Y, Yan Y, Tan KS, Tan SSL, Seet JE, Arumugam TV, Chow VTK, Wang Y, Tran T (2018) CD151, a novel host factor of nuclear export signaling in influenza virus infection. J Allergy Clin Immunol 141:1799–1817

    Article  CAS  PubMed  Google Scholar 

  • Rajesh S, Sridhar P, Tews BA, Fénéant L, Cocquerel L, Ward DG, Berditchevski F, Overduin M (2012) Structural basis of ligand interactions of the large extracellular domain of tetraspanin CD81. J Virol 86:9606–9616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reddy DO (2020) A Short Chronological Review on the Syntheses of Amine-Boranes. Chem Rev Lett 3:184–191

    CAS  Google Scholar 

  • Ryu JY, Lee JH, Lee BH, Song JS, Ahn S, Oh KS (2022) PredMS: a random forest model for predicting metabolic stability of drug candidates in human liver microsomes. Bioinformatics 38:364–368

    Article  CAS  PubMed  Google Scholar 

  • Santos MF, Rappa G, Fontana S, Karbanová J, Aalam F, Tai D, Li Z, Pucci M, Alessandro R, Morimoto C, Corbeil D, Lorico A (2022) Anti-Human CD9 Fab Fragment Antibody Blocks the Extracellular Vesicle-Mediated Increase in Malignancy of Colon Cancer Cells. Cells 11:2474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santos MF, Rappa G, Karbanová J, Vanier C, Morimoto C, Corbeil D, Lorico A (2019) Anti-human CD9 antibody Fab fragment impairs the internalization of extracellular vesicles and the nuclear transfer of their cargo proteins. J Cell Mol Med 23:4408–4421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sasaki-Tanaka R, Shibata T, Moriyama M, Okamoto H, Kogure H, Kanda T (2022) Amantadine and Rimantadine Inhibit Hepatitis A Virus Replication through the Induction of Autophagy. J Virol 96:e0064622

    Article  PubMed  Google Scholar 

  • Schmidt TH, Homsi Y, Lang T (2016) Oligomerization of the Tetraspanin CD81 via the Flexibility of Its δ-Loop. Biophys J 110:2463–2474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spilovska K, Zemek F, Korabecny J, Nepovimova E, Soukup O, Windisch M, Kuca K (2016) Adamantane - A Lead Structure for Drugs in Clinical Practice. Curr Med Chem 23:3245–3266

    Article  CAS  PubMed  Google Scholar 

  • Suhasini PC, Shetty SS, Nalilu SK, Shetty PK, Patil P (2022) Tetraspanin CD9: A friend or foe of head and neck cancer (Review). Oncol Rep 47:88

    Article  CAS  Google Scholar 

  • Suwatthanarak T, Usuba K, Kuroha K, Tanaka M, Okochi M (2023) Screening of EWI-2-Derived Peptides for Targeting Tetraspanin CD81 and Their Effect on Cancer Cell Migration. Biomolecules 13:510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian W, Chen C, Lei X, Zhao J, Liang J (2018) CASTp 3.0: computed atlas of surface topography of proteins. Nucleic Acids Res 46:W363–W367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Titu S, Grapa CM, Mocan T, Balacescu O, Irimie A (2021) Tetraspanins: Physiology, Colorectal Cancer Development, and Nanomediated Applications. Cancers (basel) 13:5662

    Article  CAS  PubMed  Google Scholar 

  • Umeda R, Satouh Y, Takemoto M, Nakada-Nakura Y, Liu K, Yokoyama T, Shirouzu M, Iwata S, Nomura N, Sato K, Ikawa M, Nishizawa T, Nureki O (2020) Structural insights into tetraspanin CD9 function. Nat Commun 11:1606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vences-Catalán F, Rajapaksa R, Kuo CC, Miller CL, Lee A, Ramani VC, Jeffrey SS, Levy R, Levy S (2021) Targeting the tetraspanin CD81 reduces cancer invasion and metastasis. Proc Natl Acad Sci USA 118:e2018961118

    Article  PubMed  PubMed Central  Google Scholar 

  • Venkatraman V (2021) FP-ADMET: a compendium of fingerprint-based ADMET prediction models. J Cheminform 13:75

    Article  PubMed  PubMed Central  Google Scholar 

  • Vergoten G, Bailly C (2023) Insights into the binding selectivity of harzianoic acids A and B to tetraspanin CD81. Explor Drug Sci 1:405–419

    Article  Google Scholar 

  • Vergoten G, Mazur I, Lagant P, Michalski JC, Zanetta JP (2003) The SPASIBA force field as an essential tool for studying the structure and dynamics of saccharides. Biochimie 85:65–73

    Article  CAS  PubMed  Google Scholar 

  • Wagner CE, Mohler ML, Kang GS, Miller DD, Geisert EE, Chang YA, Fleischer EB, Shea KJ (2003) Synthesis of 1-boraadamantaneamine derivatives with selective astrocyte vs C6 glioma antiproliferative activity. A novel class of anti-hepatitis C agents with potential to bind CD81. J Med Chem 46:2823–2833

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Xie L, Huang KW, Lai Z (2015) A rationally designed amino-borane complex in a metal organic framework: a novel reusable hydrogen storage and size-selective reduction material. Chem Commun (camb) 51:7610–7613

    Article  CAS  PubMed  Google Scholar 

  • Yue GG, Gomes AJ, Saeed MEM, Tsui KY, Dawood M, Drif AI, Wong EC, Lee WF, Liu W, Chiu PW, Efferth T, Lau CB (2022) Identification of active components in Andrographis paniculata targeting on CD81 in esophageal cancer in vitro and in vivo. Phytomedicine 102:154183

    Article  CAS  PubMed  Google Scholar 

  • Zeng P, Si M, Sun RX, Cheng X, Li XY, Chen MB (2021) Prognostic Value of CD9 in Solid Tumor: A Systematic Review and Meta-Analysis. Front Oncol 11:764630

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou Z, Yang Z, Zhou L, Yang M, He S (2023) The versatile roles of testrapanins in cancer from intracellular signaling to cell-cell communication: cell membrane proteins without ligands. Cell Biosci 13:59

    Article  PubMed  PubMed Central  Google Scholar 

  • Zimmerman B, Kelly B, McMillan BJ, Seegar TCM, Dror RO, Kruse AC, Blacklow SC (2016) Crystal Structure of a Full-Length Human Tetraspanin Reveals a Cholesterol-Binding Pocket. Cell 167:1041–1051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zuppone S, Zarovni N, Vago R (2023) The cell type dependent sorting of CD9- and CD81 to extracellular vesicles can be exploited to convey tumor sensitive cargo to target cells. Drug Deliv 30:2162161

    Article  PubMed  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

(CRediT roles): GV: visualization; software; computations; molecular modeling. CBE: visualization; software; computations; CBA: conceptualization; investigation; visualization; writing—original draft; writing—review & editing.

Corresponding author

Correspondence to Christian Bailly.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PPTX 2915 KB)

Supplementary file2 (DOCX 150 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bailly, C., Bedart, C. & Vergoten, G. A molecular docking exploration of the large extracellular loop of tetraspanin CD81 with small molecules. In Silico Pharmacol. 12, 24 (2024). https://doi.org/10.1007/s40203-024-00203-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40203-024-00203-6

Keywords

Navigation