Skip to main content

Advertisement

Log in

In silico design of a novel peptide-based vaccine against the ubiquitous apicomplexan Toxoplasma gondii using surface antigens

  • Original Research
  • Published:
In Silico Pharmacology Aims and scope Submit manuscript

Abstract

Human toxoplasmosis is a global public health concern and a commercial vaccine is still lacking. The present in silico study was done to design a novel vaccine candidate using tachyzoite-specific SAG1-realted sequence (SRS) proteins. Overlapping B-cell and strictly-chosen human MHC-I binding epitopes were predicted and connected together using appropriate spacers. Moreover, a TLR4 agonist, human high mobility group box protein 1 (HMGB1), and His-tag were added to the N- and C-terminus of the vaccine sequence. The final vaccine had 442 residues and a molecular weight of 47.71 kDa. Physico-chemical evaluation showed a soluble, highly antigenic and non-allergen protein, with coils and helices as secondary structures. The vaccine 3D model was predicted by ITASSER server, subsequently refined and was shown to possess significant interactions with human TLR4. As well, potent stimulation of cellular and humoral immunity was demonstrated upon chimeric vaccine injection. Finally, the outputs showed that this vaccine model possesses top antigenicity, which could provoke significant cell-mediated immune profile including IFN-γ, and can be utilized towards prophylactic purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and material

Data are available from the corresponding author on reasonable request.

References

  • Aasim SR, Patil CR, Kumar A, Sharma K (2022) Identification of vaccine candidate against Omicron variant of SARS-CoV-2 using immunoinformatic approaches. Silic Pharmacol. https://doi.org/10.1007/s40203-022-00128-y

    Article  Google Scholar 

  • Ahmadpour E et al (2022) Toxoplasma gondii Infection in marine animal species, as a potential source of food contamination: systematic review and meta-analysis. Acta Parasitol 67:592–605

    Article  PubMed  PubMed Central  Google Scholar 

  • Almeria S, Dubey JP (2021) Foodborne transmission of Toxoplasma gondii infection in the last decade An overview. Res Vet Sci 135:371–385

    Article  CAS  PubMed  Google Scholar 

  • Asghari A et al (2021a) Development of a chimeric vaccine candidate based on Toxoplasma gondii major surface antigen 1 and apicoplast proteins using comprehensive immunoinformatics approaches. Eur J Pharm Sci 162:105837

    Article  CAS  PubMed  Google Scholar 

  • Asghari A, Majidiani H, Nemati T, Fatollahzadeh M, Shams M, Naserifar R, Kordi BJBri, (2021b) Toxoplasma gondii tyrosine-rich oocyst wall protein: a closer look through an in silico prism. BioMed Res Int 2021:1–13. https://doi.org/10.1155/2021/1315618

    Article  CAS  Google Scholar 

  • Austhof E et al (2021) Scoping review of toxoplasma postinfectious sequelae. Foodborne Pathog Dis 18:687–701

    Article  CAS  PubMed  Google Scholar 

  • Brisse M, Vrba SM, Kirk N, Liang Y (2020) Emerging concepts and technologies in vaccine development. Front Immunol 11:2578

    Article  Google Scholar 

  • Cheng J, Randall AZ, Sweredoski MJ, PJnar B (2005) SCRATCH: a protein structure and structural feature prediction server. Nucl Acids Res 33:W72–W76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chu KB, Quan FS (2021) Advances in Toxoplasma gondii vaccines: current strategies and challenges for vaccine development. Vaccines 9:413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Craig DB, Dombkowski AA (2013) Disulfide by Design 2.0: a web-based tool for disulfide engineering in proteins. BMC Bioinform 14:1–7

    Article  Google Scholar 

  • Deng H et al (2021) Mathematical modelling of Toxoplasma gondii transmission: A systematic review. Food Waterborne Parasitol 22:e00102

    Article  PubMed  Google Scholar 

  • Dimitrov I, Bangov I, Flower DR, Doytchinova I (2014a) AllerTOP v. 2—a server for in silico prediction of allergens. J Mol Model 20:1–6

    Article  CAS  Google Scholar 

  • Dimitrov I, Naneva L, Doytchinova I, Bangov I (2014b) AllergenFP: allergenicity prediction by descriptor fingerprints. Bioinformatics 30:846–851

    Article  CAS  PubMed  Google Scholar 

  • Doytchinova IA, Flower DR (2007) VaxiJen: a server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinform 8:1–7

    Article  Google Scholar 

  • Dubey JP (2021) Outbreaks of clinical toxoplasmosis in humans: five decades of personal experience, perspectives and lessons learned. Parasit Vectors 14:1–12

    Article  Google Scholar 

  • Dunay IR, Gajurel K, Dhakal R, Liesenfeld O, Montoya, (2018) Treatment of toxoplasmosis: historical perspective, animal models, and current clinical practice. Clin Microbiol Rev 31:e00057-e117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dupont CD, Christian DA, Hunter CA 2012 Immune response and immunopathology during toxoplasmosis. In: Seminars in immunopathology, Springer, pp 793–813

  • Foroutan M, Ghaffarifar F, Sharifi Z, Dalimi A (2020) Vaccination with a novel multi-epitope ROP8 DNA vaccine against acute Toxoplasma gondii infection induces strong B and T cell responses in mice Comparative Immunology. Microbiol Infect Dis 69:101413

    Google Scholar 

  • Gasteiger E, Hoogland C, Gattiker A, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy server The proteomics protocols handbook, pp. 571–607

  • Hammed-Akanmu M et al (2022) Designing a multi-epitope vaccine against toxoplasma gondii: an immunoinformatics approach. Vaccines 10:1389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han SJC, Research (2015) Clinical vaccine development 4:46–53

  • Hebditch M, Carballo-Amador MA, Charonis S, Curtis R, Warwicker J (2017) Protein–Sol: a web tool for predicting protein solubility from sequence. Bioinformatics 33:3098–3100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heo L, Park H, Seok C (2013) GalaxyRefine: Protein structure refinement driven by side-chain repacking. Nucl Acids Res 41:W384–W388

    Article  PubMed  PubMed Central  Google Scholar 

  • Hill D, Dubey JJCm, infection, (2002) Toxoplasma gondii: transmission, diagnosis and prevention. Clin Microbiol Infect 8:634–640

    Article  CAS  PubMed  Google Scholar 

  • Jespersen MC, Peters B, Nielsen M, Pjnar M (2017) BepiPred-2.0: improving sequence-based B-cell epitope prediction using conformational epitopes. Nucl Acids Res 45:W24–W29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khodadadi M, Ghaffarifar F, Dalimi A, Ahmadpour E (2021) Immunogenicity of in-silico designed multi-epitope DNA vaccine encoding SAG1, SAG3 and SAG5 of Toxoplasma gondii adjuvanted with CpG-ODN against acute toxoplasmosis in BALB/c mice. Acta Trop 216:105836

    Article  CAS  PubMed  Google Scholar 

  • Klausen MS et al (2019) NetSurfP-2.0: Improved prediction of protein structural features by integrated deep learning proteins: structure function. Bioinformatics 87:520–527

    CAS  Google Scholar 

  • Kozakov D et al (2017) The ClusPro web server for protein–protein docking. Nat Protoc 12:255–278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laskowski R, MacArthur M, Thornton J (2006) PROCHECK: validation of protein-structure coordinates

  • Livingston B, Crimi C, Newman M, Higashimoto Y, Appella E, Sidney J, Sette A (2002) A rational strategy to design multiepitope immunogens based on multiple Th lymphocyte epitopes. J Immunol 168:5499–5506

    Article  CAS  PubMed  Google Scholar 

  • Mahdevar E et al (2021) Exploring the cancer-testis antigen BORIS to design a novel multi-epitope vaccine against breast cancer based on immunoinformatics approaches. J Biomol Struct Dyn 40(14):6363–6380

    Article  PubMed  Google Scholar 

  • Mévélec M-N, Lakhrif Z, Dimier-Poisson I (2020) Key limitations and new insights into the Toxoplasma gondii parasite stage switching for future vaccine development in human, livestock, and cats. Front Cell Infect Microbiol. https://doi.org/10.3389/fcimb.2020.607198

    Article  PubMed  PubMed Central  Google Scholar 

  • Meza B, Ascencio F, Sierra-Beltrán AP, Torres J, Angulo CJI (2017) A novel design of a multi-antigenic, multistage and multi-epitope vaccine against Helicobacter pylori: an in silico approach. Infect Genet Evol 49:309–317

    Article  CAS  PubMed  Google Scholar 

  • Parvizpour S, Pourseif MM, Razmara J, Rafi MA, Omidi Y (2020) Epitope-based vaccine design: a comprehensive overview of bioinformatics approaches. Drug Discover Today 25:1034–1042

    Article  CAS  Google Scholar 

  • Ponomarenko J, Bui HH, Li W, Fusseder N, Bourne PE, Sette A, Peters B (2008) ElliPro: a new structure-based tool for the prediction of antibody epitopes. BMC Bioinform 9:1–8

    Article  Google Scholar 

  • Rapin N, Lund O, Castiglione F (2011) Immune system simulation online. Bioinformatics 27:2013–2014

    Article  CAS  PubMed  Google Scholar 

  • Ras-Carmona A, Pelaez-Prestel HF, Lafuente EM, Reche PAJC (2021) BCEPS: A web server to predict linear B cell epitopes with enhanced immunogenicity and cross-reactivity. Cells 10:2744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reed SG, Orr MT, Fox CB (2013) Key roles of adjuvants in modern vaccines. Nat Med 19:1597–1608

    Article  CAS  PubMed  Google Scholar 

  • Rezaei F, Sarvi S, Sharif M, Hejazi SH, Sattar Pagheh A, Aghayan SA, Daryani A (2019) A systematic review of Toxoplasma gondii antigens to find the best vaccine candidates for immunization. Microial Pathog 126:172–184

    Article  CAS  Google Scholar 

  • Saha S, Raghava GP (2007) Prediction methods for B-cell epitopes. In: Flower DR (ed) Immunoinformatics. Humana Press, Springer, pp 387–394

    Chapter  Google Scholar 

  • Soria-Guerra RE, Nieto-Gomez R, Govea-Alonso DO, Rosales-Mendoza SJJobi, (2015) An overview of bioinformatics tools for epitope prediction: implications on vaccine development. J Biomed Inform 53:405–414

    Article  PubMed  Google Scholar 

  • Talebi S, Bolhassani A, Sadat SM, Vahabpour R, Agi E, Shahbazi SJB (2017) Hp91 immunoadjuvant: An HMGB1-derived peptide for development of therapeutic HPV vaccines. Biomed Pharamcotherapy 85:148–154

    Article  CAS  Google Scholar 

  • Theisen TC, Boothroyd JCJb, (2021) Transcriptional signatures of clonally derived Toxoplasma tachyzoites reveal novel insights into the expression of a family of surface proteins. PLoS ONE 17:e0262374

    Article  Google Scholar 

  • UniProt Consortium (2019) UniProt: a worldwide hub of protein knowledge. Nucl Acids Res 47:D506–D515

    Article  Google Scholar 

  • Wasmuth JD et al (2012) Integrated bioinformatic and targeted deletion analyses of the SRS gene superfamily identify SRS29C as a negative regulator of Toxoplasma virulence. Mbbio 3:e00321-e1312

    CAS  Google Scholar 

  • Yang J, Zhang Y (2015) I-TASSER server: new development for protein structure and function predictions. Nucl Acids Res 43:W174–W181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao B, Zheng D, Liang S, Zhang C (2020) SVMTriP: a method to predict B-cell linear antigenic epitopes. Immunoinformatics 299–307

Download references

Acknowledgements

The authors appreciate the staff of zoonotic diseases research center Ilam University of Medical Sciences, Ilam, Iran for their kind assistance in preparation of this manuscript.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

MS and NN conceived the study idea and protocol; HH, MCB and EG performed bioinformatics analyses, vaccine construction and subsequent validations; BNG and HM drafted the manuscript; HI performed docking analysis; MS and NN critically revised the work. All authors read and approved the final version.

Corresponding author

Correspondence to Naser Nazari.

Ethics declarations

Conflict of interest

The authors declare none.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shams, M., Heydaryan, S., Bashi, M.C. et al. In silico design of a novel peptide-based vaccine against the ubiquitous apicomplexan Toxoplasma gondii using surface antigens. In Silico Pharmacol. 11, 5 (2023). https://doi.org/10.1007/s40203-023-00140-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40203-023-00140-w

Keywords

Navigation