Release characteristics of gliclazide in a matrix system


In this study, the release characteristics of gliclazide in a polymeric matrix system, which is used for controlled drug release purposes, are conducted experimentally and numerically. A code using the finite element method predicting the drug release behavior of gliclazide matrix system in an aqueous medium is developed. The parameters having significant importance in drug release kinetics, such as structure factor, the slab’s size and shape are varied systematically. The consistent reduction in the solid drug during the dissolution process is evaluated. The numerical data agree well with the experimental results. Therefore, the controlled drug release of gliclazide is accurately modeled by the present numerical code. The results imply that the porosity of the matrix system has the most significant effect on the drug dissolution rate. The reduction in the tablet’s diameter and utilization of cylindrical slab geometry increases the speed of the drug dissolution in the aqueous medium.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.


  1. Ambrogi V, Perioli L, Ciarnelli V, Nocchetti M, Rossi C (2009) Effect of gliclazide immobilization into layered double hydroxide on drug release. Eur J Pharm Biopharm [Internet] 73(2):285–291

    CAS  Article  Google Scholar 

  2. Bajpai S, Chand N, Soni S (2015) Controlled release of anti-diabetic drug gliclazide from poly(ca prolactone)/poly(acrylic acid) hydrogels. J Biomater Sci Polym Ed 26:947–962

    CAS  PubMed  Article  Google Scholar 

  3. Barba AA, d’Amore M, Chirico S, Lamberti G, Titomanlio G (2009) A general code to predict the drug release kinetics from different shaped matrices. Eur J Pharm Sci [Internet] 36(2):359–368

    CAS  Article  Google Scholar 

  4. Bettini R, Colombo P, Massimo G, Catellani PL, Vitali T (1994) Swelling and drug release in hydrogel matrices: polymer viscosity and matrix porosity effects. Eur J Pharm Sci [Internet] 2(3):213–219

    CAS  Article  Google Scholar 

  5. Blagoeva R, Nedev A (2008) A problem for drug release from 2D polymeric systems. Mech Res Commun [Internet] 35(5):344–349

    Article  Google Scholar 

  6. Borgquist P, Körner A, Piculell L, Larsson A, Axelsson A (2006) A model for the drug release from a polymer matrix tablet-effects of swelling and dissolution. J Control Release 113:216–225

    CAS  PubMed  Article  Google Scholar 

  7. Choi J, Konno T, Takai M, Ishihara K (2009) Controlled drug release from multilayered phospholipid polymer hydrogel on titanium alloy surface. Biomaterials [Internet] 30(28):5201–5208

    CAS  Article  Google Scholar 

  8. Cobby J, Mayersohn M, Walker GC (1974) Influence of shape factors on kinetics of drug release from matrix tablets I: theoretical. J Pharm Sci [Internet]. 63(5):725–732

    CAS  PubMed  Article  Google Scholar 

  9. Cussler EL (2009 Diffusion-mass transfer in fluid systems, 3rd edn. Textbook part of Cambridge series in chemical engineering. University of Minnesota. ISBN: 9780521871211.

  10. Frenning G, Strømme M (2003) Drug release modeled by dissolution, diffusion, and immobilization. Int J Pharm [Internet] 250(1):137–145

    CAS  Article  Google Scholar 

  11. Frenning G, Fichtner F, Alderborn G (2005) A new method for characterizing the release of drugs from single agglomerates. Chem Eng Sci [Internet] 60(14):3909–3918

    CAS  Article  Google Scholar 

  12. Higuchi T (1963) Mechanism of sustained-action medication. Theoretical analysis of rate of release of solid drugs dispersed in solid matrices. J Pharm Sci [Internet] 52(12):1145–1149.

    CAS  Article  Google Scholar 

  13. Jaimini M, Kothari A (2012) Sustained release matrix type drug delivery system: a review. J Drug Deliv Ther.

  14. Kuentz M, Holm R, Elder DP (2016) Methodology of oral formulation selection in the pharmaceutical industry. Eur J Pharm Sci 87:136–163

    CAS  PubMed  Article  Google Scholar 

  15. Lamberti G, Galdi I, Barba AA (2011) Controlled release from hydrogel-based solid matrices. A model accounting for water up-take, swelling and erosion. Int J Pharm [Internet]. 407(1):78–86

    CAS  PubMed  Article  Google Scholar 

  16. Lee AJ, King JR, Hibberd S (1998) Mathematical modelling of the release of drug from porous, nonswelling transdermal drug-delivery devices. Math Med Biol AJIMA [Internet] 15(2):135–163.

    CAS  Article  Google Scholar 

  17. Lemaire V, Bélair J, Hildgen P (2003) Structural modeling of drug release from biodegradable porous matrices based on a combined diffusion/erosion process. Int J Pharm [Internet] 258(1):95–107

    CAS  Article  Google Scholar 

  18. Lu M, Xing H, Yang Z, Sun Y, Yang T, Zhao X et al (2017) Recent advances on extracellular vesicles in therapeutic delivery: challenges, solutions, and opportunities. Eur J Pharm Biopharm 119:381–395

    CAS  PubMed  Article  Google Scholar 

  19. Patel H, Panchal DR, Patel U, Brahmbhatt T, Suthar M (2011) Matrix type drug delivery system: a review. J Pharm Sci Biosci Res 1:143–151

    Google Scholar 

  20. Pisani L (2011) Simple expression for the tortuosity of porous media. Transp Porous Media [Internet]. 88(2):193–203.

    CAS  Article  Google Scholar 

  21. Pitt CG, Schindler A (1995) The kinetics of drug cleavage and release from matrices containing covalent polymer-drug conjugates. J Control Release [Internet] 33(3):391–395

    CAS  Article  Google Scholar 

  22. Reddy KR, Mutalik S, Reddy S (2003) Once-daily sustained-release matrix tablets of nicorandil: formulation and in vitro evaluation. AAPS PharmSciTech [Internet]. 4(4):480–488.

    PubMed Central  Article  Google Scholar 

  23. Siepmann J, Kranz H, Bodmeier R, Peppas NA (1999) HPMC-matrices for controlled drug delivery: a new model combining diffusion, swelling, and dissolution mechanisms and predicting the release kinetics. Pharm Res [Internet] 16(11):1748–1756.

    CAS  Article  Google Scholar 

  24. Tan H, Xing S, Bi X, Li L, Gong H, Zhong M et al (2008) Felodipine attenuates vascular inflammation in a fructose-induced rat model of metabolic syndrome via the inhibition of NF-κB activation. Acta Pharmacol Sin [Internet] 29:1051.

    CAS  Article  Google Scholar 

  25. Thombre AG, am Ende MT, Wu XY (2010) Controlled release technology and design of oral controlled release dosage forms [Internet]. Chem Eng Pharm Ind.

    Article  Google Scholar 

Download references


This work is supported by Cukurova University Scientific Research Office financially under contract no FBA-2017-7960 and FBA-2019-12419.

Author information



Corresponding author

Correspondence to Cetin Canpolat.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tatlisoz, M.M., Demirturk, E. & Canpolat, C. Release characteristics of gliclazide in a matrix system. In Silico Pharmacol. 9, 12 (2021).

Download citation


  • Controlled drug release
  • Finite element modeling
  • Gliclazide
  • Matrix system