Skip to main content
Log in

Release characteristics of gliclazide in a matrix system

  • Original Research
  • Published:
In Silico Pharmacology Aims and scope Submit manuscript

Abstract

In this study, the release characteristics of gliclazide in a polymeric matrix system, which is used for controlled drug release purposes, are conducted experimentally and numerically. A code using the finite element method predicting the drug release behavior of gliclazide matrix system in an aqueous medium is developed. The parameters having significant importance in drug release kinetics, such as structure factor, the slab’s size and shape are varied systematically. The consistent reduction in the solid drug during the dissolution process is evaluated. The numerical data agree well with the experimental results. Therefore, the controlled drug release of gliclazide is accurately modeled by the present numerical code. The results imply that the porosity of the matrix system has the most significant effect on the drug dissolution rate. The reduction in the tablet’s diameter and utilization of cylindrical slab geometry increases the speed of the drug dissolution in the aqueous medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  • Ambrogi V, Perioli L, Ciarnelli V, Nocchetti M, Rossi C (2009) Effect of gliclazide immobilization into layered double hydroxide on drug release. Eur J Pharm Biopharm [Internet] 73(2):285–291

    Article  CAS  Google Scholar 

  • Bajpai S, Chand N, Soni S (2015) Controlled release of anti-diabetic drug gliclazide from poly(ca prolactone)/poly(acrylic acid) hydrogels. J Biomater Sci Polym Ed 26:947–962

    Article  CAS  PubMed  Google Scholar 

  • Barba AA, d’Amore M, Chirico S, Lamberti G, Titomanlio G (2009) A general code to predict the drug release kinetics from different shaped matrices. Eur J Pharm Sci [Internet] 36(2):359–368

    Article  CAS  Google Scholar 

  • Bettini R, Colombo P, Massimo G, Catellani PL, Vitali T (1994) Swelling and drug release in hydrogel matrices: polymer viscosity and matrix porosity effects. Eur J Pharm Sci [Internet] 2(3):213–219

    Article  CAS  Google Scholar 

  • Blagoeva R, Nedev A (2008) A problem for drug release from 2D polymeric systems. Mech Res Commun [Internet] 35(5):344–349

    Article  Google Scholar 

  • Borgquist P, Körner A, Piculell L, Larsson A, Axelsson A (2006) A model for the drug release from a polymer matrix tablet-effects of swelling and dissolution. J Control Release 113:216–225

    Article  CAS  PubMed  Google Scholar 

  • Choi J, Konno T, Takai M, Ishihara K (2009) Controlled drug release from multilayered phospholipid polymer hydrogel on titanium alloy surface. Biomaterials [Internet] 30(28):5201–5208

    Article  CAS  Google Scholar 

  • Cobby J, Mayersohn M, Walker GC (1974) Influence of shape factors on kinetics of drug release from matrix tablets I: theoretical. J Pharm Sci [Internet]. 63(5):725–732

    Article  CAS  PubMed  Google Scholar 

  • Cussler EL (2009 Diffusion-mass transfer in fluid systems, 3rd edn. Textbook part of Cambridge series in chemical engineering. University of Minnesota. ISBN: 9780521871211. https://www.cambridge.org/tr/academic/subjects/engineering/chemical-engineering/diffusion-mass-transfer-fluid-systems-3rd-edition?format=HB&isbn=9780521871211

  • Frenning G, Strømme M (2003) Drug release modeled by dissolution, diffusion, and immobilization. Int J Pharm [Internet] 250(1):137–145

    Article  CAS  Google Scholar 

  • Frenning G, Fichtner F, Alderborn G (2005) A new method for characterizing the release of drugs from single agglomerates. Chem Eng Sci [Internet] 60(14):3909–3918

    Article  CAS  Google Scholar 

  • Higuchi T (1963) Mechanism of sustained-action medication. Theoretical analysis of rate of release of solid drugs dispersed in solid matrices. J Pharm Sci [Internet] 52(12):1145–1149. https://doi.org/10.1002/jps.2600521210

    Article  CAS  Google Scholar 

  • Jaimini M, Kothari A (2012) Sustained release matrix type drug delivery system: a review. J Drug Deliv Ther. https://doi.org/10.22270/jddt.v2i6.340

  • Kuentz M, Holm R, Elder DP (2016) Methodology of oral formulation selection in the pharmaceutical industry. Eur J Pharm Sci 87:136–163

    Article  CAS  PubMed  Google Scholar 

  • Lamberti G, Galdi I, Barba AA (2011) Controlled release from hydrogel-based solid matrices. A model accounting for water up-take, swelling and erosion. Int J Pharm [Internet]. 407(1):78–86

    Article  CAS  PubMed  Google Scholar 

  • Lee AJ, King JR, Hibberd S (1998) Mathematical modelling of the release of drug from porous, nonswelling transdermal drug-delivery devices. Math Med Biol AJIMA [Internet] 15(2):135–163. https://doi.org/10.1093/imammb/15.2.135

    Article  CAS  Google Scholar 

  • Lemaire V, Bélair J, Hildgen P (2003) Structural modeling of drug release from biodegradable porous matrices based on a combined diffusion/erosion process. Int J Pharm [Internet] 258(1):95–107

    Article  CAS  Google Scholar 

  • Lu M, Xing H, Yang Z, Sun Y, Yang T, Zhao X et al (2017) Recent advances on extracellular vesicles in therapeutic delivery: challenges, solutions, and opportunities. Eur J Pharm Biopharm 119:381–395

    Article  CAS  PubMed  Google Scholar 

  • Patel H, Panchal DR, Patel U, Brahmbhatt T, Suthar M (2011) Matrix type drug delivery system: a review. J Pharm Sci Biosci Res 1:143–151

    Google Scholar 

  • Pisani L (2011) Simple expression for the tortuosity of porous media. Transp Porous Media [Internet]. 88(2):193–203. https://doi.org/10.1007/s11242-011-9734-9

    Article  CAS  Google Scholar 

  • Pitt CG, Schindler A (1995) The kinetics of drug cleavage and release from matrices containing covalent polymer-drug conjugates. J Control Release [Internet] 33(3):391–395

    Article  CAS  Google Scholar 

  • Reddy KR, Mutalik S, Reddy S (2003) Once-daily sustained-release matrix tablets of nicorandil: formulation and in vitro evaluation. AAPS PharmSciTech [Internet]. 4(4):480–488. https://doi.org/10.1208/pt040461

    Article  PubMed Central  Google Scholar 

  • Siepmann J, Kranz H, Bodmeier R, Peppas NA (1999) HPMC-matrices for controlled drug delivery: a new model combining diffusion, swelling, and dissolution mechanisms and predicting the release kinetics. Pharm Res [Internet] 16(11):1748–1756. https://doi.org/10.1023/A:1018914301328

    Article  CAS  Google Scholar 

  • Tan H, Xing S, Bi X, Li L, Gong H, Zhong M et al (2008) Felodipine attenuates vascular inflammation in a fructose-induced rat model of metabolic syndrome via the inhibition of NF-κB activation. Acta Pharmacol Sin [Internet] 29:1051. https://doi.org/10.1111/j.1745-7254.2008.00843.x

    Article  CAS  Google Scholar 

  • Thombre AG, am Ende MT, Wu XY (2010) Controlled release technology and design of oral controlled release dosage forms [Internet]. Chem Eng Pharm Ind. https://doi.org/10.1002/9780470882221.ch37

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by Cukurova University Scientific Research Office financially under contract no FBA-2017-7960 and FBA-2019-12419.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cetin Canpolat.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tatlisoz, M.M., Demirturk, E. & Canpolat, C. Release characteristics of gliclazide in a matrix system. In Silico Pharmacol. 9, 12 (2021). https://doi.org/10.1007/s40203-020-00068-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40203-020-00068-5

Keywords

Navigation