In silico predictions on the possible mechanism of action of selected bioactive compounds against breast cancer

Abstract

Breast cancer is one of the leading causes of death among women. We employed in silico model to predict the mechanism of actions of selected novel compounds reported against breast cancer using ADMET profiling, drug likeness and molecular docking analyses. The selected compounds were andrographolide (AGP), dipalmitoylphosphatidic acid (DPA), 3-(4-Bromo phenylazo)-2,4-pentanedione (BPP), atorvastatin (ATS), benzylserine (BZS) and 3β,7β,25-trihydroxycucurbita-5,23(E)-dien-19-al (TCD). These compounds largely conform to ADMETlab and Lipinki’s rule of drug likeness criteria in addition to their lesser hepatotoxic and mutagenic effects. Docking studies revealed a strong affinity of AGP versus NF-kB (− 6.8 kcal/mol), DPA versus Cutlike-homeobox (− 5.1 kcal/mol), BPP versus Hypoxia inducing factor 1 (− 7.7 kcal/mol), ATS versus Sterol Regulatory Element Binding Protein 2 (− 7.2 kcal/mol), BZS versus Ephrin type-A receptor 2 (− 4.4 kcal/mol) and TCD versus Ying Yang 1 (− 9.4 kcal/mol). Likewise, interaction between the said compounds and respective gene products were evidently observed with strong affinities; AGP versus COX-2 (− 9.6 kcal/mol), DPA versus Fibroblast growth factor receptor (− 5.9 kcal/mol), BPP versus Vascular endothelial growth factor (− 5.8 kcal/mol), ATS versus HMG-COA reductase (− 9.1 kcal/mol), BZS versus L-type amino acid transporter 1 (− 5.3 kcal/mol) and TCD versus Histone deacytylase (− 7.7 kcal/mol), respectively. The compounds might potentially target transcription through inhibition of promoter-transcription factor binding and/or inactivation of final gene product. Thus, findings from this study provide a possible mechanism of action of these xenobiotics to guide in vitro and in vivo studies in breast cancer.

Graphic abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Abdulkareem F (2017) Epidemiology & incidence of common cancers in Nigeria. J Cancer Biol Res 5:1105

    Google Scholar 

  2. Ahn SC, Jang H, Bae SK (2011) Curcumin down-regulates visfatin expression and inhibits breast cancer cell invasion. Endocrinology 153:554–563. https://doi.org/10.1210/en.2011-1413

    CAS  Article  PubMed  Google Scholar 

  3. Ali A, Badawy MEI, Shah R, Rehman W, El Y (2017) Synthesis, characterization and in-silico ADMET screening of mono- and di-hydrazides and hydrazones. Der Chem Sin 8:446–460

    CAS  Google Scholar 

  4. Babu E, Kanai Y, Chairoungdua A, Kim DK, Iribe Y, Tangtrongsup S, Jutabha P, Li Y, Ahmed N, Sakamoto S et al (2003) Identification of a novel system L amino acid transporter structurally distinct from heterodimeric amino acid transporters. J Biol Chem 278:38–45

    Article  Google Scholar 

  5. Bai LY, Chiu CF, Chu PC, Lin WY, Chiu SJ, Weng JR (2016) A triterpenoid from wild bitter gourd inhibits breast cancer cells. Sci Rep 6:1–10. https://doi.org/10.1038/srep22419

    CAS  Article  Google Scholar 

  6. Barbosa AM, Martel F (2020) Targeting glucose transporters for breast cancer therapy : the effect of natural and synthetic compounds. Cancers (Basel) 12:154. https://doi.org/10.3390/cancers12010154

    CAS  Article  Google Scholar 

  7. Biovia DS (2015) Discovery studio modeling environment. In: San Diego, Dassault Systemes, Release, vol 4

  8. Body S, Martin L, Zorzano A, Palacin M, Estevez R, Bertran J (2005) Identification of LAT4, a novel amino acid transporter with system L activity. J Biol Chem 280:12002–12011

    Article  Google Scholar 

  9. Budzik MP, Sobieraj MT, Sobol M, Patera J, Czerw A (2019) histopathological analysis and comparison with invasive ductal breast cancer Medullary breast cancer is a predominantly triple- negative breast cancer—histopathological analysis and comparison with invasive ductal breast cancer. Arch Med Sci. https://doi.org/10.5114/aoms.2019.86763.10.5114/aoms.2019.86763

    Article  PubMed  Google Scholar 

  10. CCP (2018) Nigerian National Cancer Control Plan 2018–2022, pp 1–67

  11. Carvalho-Silva D, Pierleoni A, Pignatelli M, Ong CK, Fumis L, Karamanis N, Carmona M, Faulconbridge A, Hercules A, McAuley E (2019) Open targets platform: new developments and updates two years on. Nucleic Acids Res 47:1056–1065

    Article  Google Scholar 

  12. Chen J, Zhou Z, Yao Y, Dai J, Zhou D, Zhang LWQ (2018) Dipalmitoylphosphatidic acid inhibits breast cancer growth by suppressing angiogenesis via inhibition of the CUX1/FGF1/HGF signalling pathway. J Cell Mol Med 2018:1–11. https://doi.org/10.1111/jcmm.13727

    CAS  Article  Google Scholar 

  13. Cheng AC, Coleman RG, Smyth KT, Cao Q, Soulard P, Caffrey DR, Salzberg AC, Huang ES (2007) Structure-based maximal affinity model predicts small-molecule druggability. Nat Biotechnol 25:71–75. https://doi.org/10.1038/nbt1273

    CAS  Article  PubMed  Google Scholar 

  14. Damaskos C, Valsami S, Kontos M, Spartalis E, Kalampokas T, Kalampokas E, Athanasiou A, Moris D, Daskalopoulou A, Davakis S, Tsourouflis G, Kontzoglou K, Perrea D, Nikiteas N, Dimitroulis D (2017) Histone deacetylase inhibitors: an attractive therapeutic strategy against breast cancer. Anticancer Res 37:35–46. https://doi.org/10.21873/anticanres.11286

    CAS  Article  PubMed  Google Scholar 

  15. Dehghani S, Kooshafar Z, Almasirad A, Tahmasvand R, Moayer F, Muhammadnejad A, Shafiee S, Salimi M (2019) A novel hydrazide compound exerts anti-metastatic effect against breast cancer. Biol Res 52:1–8. https://doi.org/10.1186/s40659-019-0247-2

    CAS  Article  Google Scholar 

  16. Dimitroulakos J, Lorimer AGG (2006) Strategies to enhance epidermal growth factor inhibition: targeting the mevalonate pathway. Clin Cancer 12:4426s–4431s

    CAS  Article  Google Scholar 

  17. Doak BC, Giordanetto F, Kihlberg J (2014) Review oral druggable space beyond the rule of 5: insights from drugs and clinical candidates. Chem Biol Rev 21:1115–1142. https://doi.org/10.1016/j.chembiol.2014.08.013

    CAS  Article  Google Scholar 

  18. Dong J, Wang NN, Yao ZJ, Zhang L, Cheng Y, Ouyang D, Lu AP, Cao DS (2018) Admetlab: a platform for systematic ADMET evaluation based on a comprehensively collected ADMET database. J Cheminform. https://doi.org/10.1186/s13321-018-0283-x

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ediriweera MK, Tennekoon KH, Samarakoon SR (2019) Emerging role of histone deacetylase inhibitors as anti-breast-cancer agents. Drug Discov Today. https://doi.org/10.1016/j.drudis.2019.02.003

    Article  PubMed  Google Scholar 

  20. Fontana E, Dansette PM, Poli SM, Plan C, Ge O (2005) Cytochrome P450 enzymes mechanism based inhibitors: common sub-structures and reactivity. Curr Drug Metab 6:413–454

    CAS  Article  PubMed  Google Scholar 

  21. Geldermalsen MV, Quek L, Turner N, Freidman N, Pang A, Guan YF, Krycer JR, Ryan R, Wang Q, Holst J (2018) Benzylserine inhibits breast cancer cell growth by disrupting intracellular amino acid homeostasis and triggering amino acid response pathways. BMC Cancer 18:1–14

    Article  Google Scholar 

  22. Golla UR, State P, Medical H, Sunder S, Bhimathati R (2014) In SILICO design and ADMET prediction of rivastigmine analogues for treatment of Alzheimer’s disease. An Int J Adv Pharm Sci 4:270–278

    Google Scholar 

  23. Gong X, Smith JR, Swanson HM, Rubin LP (2018) Carotenoid lutein selectively inhibits breast cancer cell growth and potentiates the effect of chemotherapeutic agents through ROS-mediated mechanism. Molecules 23:1–18. https://doi.org/10.3390/molecules23040905

    CAS  Article  Google Scholar 

  24. Guan M, Tong Y, Guan M, Liu X, Wang M, Niu R (2018) Lapatinib inhibits breast cancer cell proliferation by influencing PKM2 expression. Technol Cancer Res Treat 17:1–12. https://doi.org/10.1177/1533034617749418

    CAS  Article  Google Scholar 

  25. Guo P, Chen W, Li H, Li M, Li L (2018) The histone acetylation modifications of breast cancer and their therapeutic implications. Pathol Oncol Res. https://doi.org/10.1007/s12253-018-0433-5

    Article  PubMed  PubMed Central  Google Scholar 

  26. Hjelm TE, Matovu A, Mugisha N, Lo J (2019) Breast cancer care in Uganda: a multicenter study on the frequency of breast cancer surgery in relation to the incidence of breast cancer. PLoS ONE 14:1–10

    Google Scholar 

  27. Jie D, Ning-Ning W, Zhi-Jiang Y, Lin Z, Yan C, Defang O, Ai-Ping L, Dong-Sheng C (2018) ADMETlab: a platform for systematic ADMET evaluation based on a comprehensively collected ADMET database. J Cheminform 10:29

    Article  Google Scholar 

  28. Kamel A, Harriman S (2013) Inhibition of cytochrome P450 enzymes and biochemical aspects of mechanism-based inactivation (MBI). Drug Discov Today Technol 10:e177–e189. https://doi.org/10.1016/j.ddtec.2012.09.011

    Article  PubMed  Google Scholar 

  29. Kumar S, Aljarrah A, Burney I, Al-moundhri M (2019) Breast cancer (BM) article. Oman Med J 34:412–419. https://doi.org/10.5001/omj.2019.76

    Article  PubMed  PubMed Central  Google Scholar 

  30. Lambert SA, Jolma A, Campitelli LE, Das PK, Yin Y, Albu M, Chen X, HughesWeirauch TJM (2018) The human transcription factors. Cell 172:660–665

    Article  Google Scholar 

  31. Lennernäs H (2003) Clinical pharmacokinetics of atorvastatin. Clin Pharmacokinet 42:1141–1160

    Article  PubMed  Google Scholar 

  32. Ma Q, Gao Y, Xu P, Li K, Xu X, Gao J, Qi Y, Xu J, Yang Y, Song W, He X, Liu S, Yuan X, Yin W, He Y, Pan W, Wei L, Zhang J (2019) Atorvastatin inhibits breast cancer cells by downregulating PTEN/AKT pathway via promoting ras homolog family member B (RhoB). BioMed Res Int 2019:1–15

    Google Scholar 

  33. Peng Y, Wang Y, Tang N, Sun D, Lan Y, Yu Z, Zhao X, Feng L, Zhang B, Jin L, Yu F, Ma X, Lv C (2018) Andrographolide inhibits breast cancer through suppressing COX-2 expression and angiogenesis via inactivation of p300 signaling and VEGF pathway. J Exp Clin Cancer Res 37:1–14

    CAS  Article  Google Scholar 

  34. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. Prashantha Kumar BR, Soni M, Bharvi Bhikhalal U, Kakkot IR, Jagadeesh M, Bommu P, Nanjan MJ (2010) Analysis of physicochemical properties for drugs from nature. Med Chem Res 19:984–992. https://doi.org/10.1007/s00044-009-9244-2

    CAS  Article  Google Scholar 

  36. Ruf W, Yokota NSF (2010) Tissue factor in cancer progression and angiogenesis. Thromb Res 125:S36-38

    Article  PubMed  PubMed Central  Google Scholar 

  37. Segall MD, Greene N (2014) Finding the rules for successful drug optimisation. Drug Discov Today. https://doi.org/10.1016/j.drudis.2014.01.005

    Article  PubMed  PubMed Central  Google Scholar 

  38. Shadap A, Pais M, Prabhu A (2019) A descriptive study to assess the knowledge on breast cancer and utilization of mammogram among women in selected villages of udupi district, Karnataka. Nitte Univ J Heal Sci 4:84–87

    Google Scholar 

  39. Sheikhpoor M (2019) Immunotherapy in breast cancer Immunotherapy in breast cancer. Clin Cancer Investig J. https://doi.org/10.4103/ccij.ccij

    Article  Google Scholar 

  40. Singh JK, Simões BM, Clarke RB, Bundred NJ (2013) Targeting IL-8 signalling to inhibit breast cancer stem cell activity. Expert Opin Ther Targets 17:1234–1241. https://doi.org/10.1517/14728222.2013.835398

    CAS  Article  Google Scholar 

  41. Talib WH, Al-noaimi M (2018) A new acetylacetone derivative inhibits breast cancer by apoptosis induction and angiogenesis inhibition. J Cancer Res Ther. https://doi.org/10.4103/jcrt.JCRT

    Article  PubMed  Google Scholar 

  42. Tsubura A, Lai Y-C, Kuwata M, Uehara N, Yoshizawa K (2011) Anticancer effects of garlic and garlic-derived compounds for breast cancer control. Anticancer Agents Med Chem 11:249–253

    CAS  Article  PubMed  Google Scholar 

  43. Vadodkar AS, Suman S, Lakshmanaswamy R, Damodaran C (2012) Chemoprevention of Breast Cancer by Dietary Compounds Dietary Compounds. Anti-cancer Agent Med Chem 2012:1185–1202

    Article  Google Scholar 

  44. Wang Q, Ge X, Tian X, Zhang Y, Zhang JPZ (2013) Soy isoflavone: the multipurpose phytochemical (review). Biomed Rep 1:697–701. https://doi.org/10.3892/br.2013.129

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. Wang T, Song Y, Wang H, Zhang J, Yu S, Gu Y, Chen T, Wang Y, Shen H, Jia G (2012) Oxidative DNA damage and global DNA hypomethylation are related to folate deficiency in chromate manufacturing workers. J Hazard Mater 213–214:440–446. https://doi.org/10.1016/j.jhazmat.2012.02.024

    CAS  Article  PubMed  Google Scholar 

  46. Yaghoubi A, Khazaei M, Hasanian SM, Avan A (2019) Bacteriotherapy in breast cancer. Int J Mol Sci 20:1–21

    Article  Google Scholar 

  47. Yusof I, Segall MD (2013) Considering the impact drug-like properties have on the chance of success. Drug Discov Today 18:659–666. https://doi.org/10.1016/j.drudis.2013.02.008

    CAS  Article  PubMed  Google Scholar 

  48. Zhang H, Wang K, Lin G, Zhao Z (2014) Antitumor mechanisms of S-allyl mercaptocysteine for breast cancer therapy. BMC Complement Altern Med 14:1–12

    Article  Google Scholar 

  49. Zhu T, Wang DX, Zhang W, Liao XQ, Guan X, Bo H, Sun JY, Huang NW, He J, Zhang YK, Tong JLC (2013) Andrographolide protects against LPS-induced acute lung injury by inactivation of NF-kappaB. PLoS ONE 2:e56407

    Article  Google Scholar 

  50. Zhu H, Zhu G, Xu Y, Huang G (2018) Bioscience reports: this is an accepted manuscript, not the final version of record. You are encouraged to use the Version of Record that, when published, will replace this version. The most up-to-date version is available at http://dx.doi.org/10.1042/B. Biosci Rep 2018:7. https://doi.org/10.1042/BSR20180738 ((Casticin. Doi: 10.1042/BSR20180738))

    Article  Google Scholar 

  51. Zucchetti B, Shimada AK, Katz A, Curigliano G (2019) The role of histone deacetylase inhibitors in metastatic breast cancer. Breast. https://doi.org/10.1016/j.breast.2018.12.001

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to thank Dr. David A. Ebuka of the Chemistry Department, Ahmadu Bello University Zaria and Prof. M.N. Shuaibu of Biochemistry Department Ahmadu Bello University Zaria for their assistance and guidance towards successful completion of this work. We also wish to thank Mrs. Salamatu Sani of English and Literary studies Department of Ahmadu Bello University Zaria for improving the quality of this manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Aliyu Muhammad.

Ethics declarations

Conflict of interest

Authors declare that there is no conflict of interest with regards to the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PPTX 2654 kb)

Supplementary file2 (DOCX 19 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Muhammad, A., Katsayal, B.S., Forcados, G.E. et al. In silico predictions on the possible mechanism of action of selected bioactive compounds against breast cancer. In Silico Pharmacol. 8, 4 (2020). https://doi.org/10.1007/s40203-020-00057-8

Download citation

Keywords

  • Breast cancer
  • Compounds
  • In silico
  • Mechanism
  • Predictions
  • Docking