Insight into glycogen synthase kinase-3β inhibitory activity of phyto-constituents from Melissa officinalis: in silico studies

Abstract

Over activity of Glycogen synthase kinase-3β (GSK-3β), a serine/threonine-protein kinase has been implicated in a number of diseases including stroke, type II diabetes and Alzheimer disease (AD). This study aimed to find novel inhibitors of GSK-3β from phyto-constituents of Melissa officinalis with the aid of computational analysis. Molecular docking, induced-fit docking (IFD), calculation of binding free energy via the MM-GBSA approach and Lipinski’s rule of five (RO5) were employed to filter the compounds and determine their druggability. Most importantly, the compounds pIC50 were predicted by machine learning-based model generated by AutoQSAR algorithm. The generated model was validated to affirm its predictive model. The best model obtained was Model kpls_desc_38 (R2 = 0.8467 and Q2 = 0.8069), and this external validated model was utilized to predict the bioactivities of the lead compounds. While a number of characterized compounds from Melissa officinalis showed better docking score, binding free energy alongside adherence to RO5 than co-cystallized ligand, only three compounds (salvianolic acid C, ellagic acid and naringenin) showed more satisfactory pIC50. The results obtained in this study can be useful to design potent inhibitors of GSK-3β.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Ammon HP, Kelber O, Okpanyi SN (2006) Spasmolytic and tonic effect of Iberogast (STW 5) in intestinal smooth muscle. Phytomed Suppl 5:67–74

    Google Scholar 

  2. Bertrand JA, Thieffine S, Vulpetti A et al (2003) Structural characterization of the GSK-β active site using selective and non-selective ATP-mimetic inhibitors. J Mol Bio 333(2):393–407

    CAS  Google Scholar 

  3. Beurel E (2011) Regulation by glycogen synthase kinase-3 of inflammation and T cells in CNS diseases. Front Mol Neurosci 31(4):1–8

    Google Scholar 

  4. Buescher JL, Phiel CJ (2010) A non catalytic domain of glycogen synthase kinase-3 (GSK-3) is essential for activity. J Biol Chem 285:7957–7963

    PubMed  PubMed Central  CAS  Google Scholar 

  5. Cheng H, Woodgett J, Maamari M, Force T (2011) Targeting GSK-3 family members in the heart: a very sharp double-edged sword. J Mol Cell Cardiol 51:607–613

    PubMed  CAS  Google Scholar 

  6. Cociova OM, Li B, NomanBhoy T, Li Q, Nakamura A, Nomura M, Okada K et al (2017) Synthesis and structure–activity relationship of 4-quinolone-3-carboxylic acid based inhibitors of glycogen synthase kinase-3β. Bioorg Mel Chem Lett 27(16):3733–3738

    Google Scholar 

  7. De Bondt HL, Rosenblatt J, Jancaric J, Jones HD, Morgan DO, Kim SH (1993) Crystal structure of cyclin-dependendkinase 2. Nature 363:595–602

    PubMed  Google Scholar 

  8. de Oliveira MT, Katekawa E (2017) On the virtues of automated QSAR—the new kid on the block. Future Med Chem. https://doi.org/10.4155/FMC-2017-0170

    Article  Google Scholar 

  9. Dixon SL, Duan J, Smith E, Von Bargen CD, Sherman W, Repasky MP (2016) AutoQSAR: an automated machine learning tool for best-practice quantitative structure–activity relationship modeling. Future Med Chem 8:1825–1839

    PubMed  CAS  Google Scholar 

  10. Dorm GW (2005) 2nd, Force T. Protein kinase cascades in the regulation of cardiac hypertrophy. J Clin Investig 115:527–537

    Google Scholar 

  11. Duan J, Dixon SL, Lowrie JF, Sherman W (2010a) Analysis and comparison of 2D fingerprints: insights into database screening performance using eight fingerprint methods. J Mol Graph Model 29:157–170

    PubMed  CAS  Google Scholar 

  12. Duan J, Dixon SL, Lowrie JF, Sherman W (2010b) Analysis and comparison of 2D fingerprints; insights into database screening performance using eight fingerprint method. J Mol Graph Model 29:157–170

    PubMed  CAS  Google Scholar 

  13. Eldar-Finkelman H (2002) Glycogen synthase kinase 3: an emerging therapeutic target. Trends Mol Med 8(1):26–32

    Google Scholar 

  14. Elekofehinti OO, Ejelonu O, Iwaloye O et al (2018) Discovery of potential visfatin activators using in silico docking and ADME predictions as therapy for type 2 diabetes. Beni Suef Univ J Basic Appl Sci 7(2):241–249

    Google Scholar 

  15. Gao X, Wang JY, Gao LM, Yin XF, Liu L (2013) Identification and analysis of glycogen synthase kinase 3 beta1 interactome. Cell Biol Int 37:768–779

    PubMed  CAS  Google Scholar 

  16. Genheden S, Ryde U (2015) The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Exp Opin Drug Discov 10:49–461. https://doi.org/10.1517/17460441.2015.1032936

    Article  CAS  Google Scholar 

  17. Golbraikh A, Tropsha AJ (2002) Beware of q2! Mol Graph Mod 20:269–276. https://doi.org/10.1016/s1093-3263(01)00123-1

    Article  CAS  Google Scholar 

  18. Gombar VK, Silver IS, Zhao Z (2003) Role of ADME characteristics in drug discovery and their in silico evaluation: in silico screening of chemicals for their metabolic stability. Curr Top Med Chem 3(11):1205–1225. https://doi.org/10.2174/1568026033452014

    Article  PubMed  CAS  Google Scholar 

  19. Gum RJ, Gaede LL, Koterski SL, Heindel M, Clampit JE, Zinker BA et al (2003) Reduction of protein tyrosine phosphatase 1B increases insulin-dependent signaling in ob/ob mice. Diabetes 52:21–28

    PubMed  CAS  Google Scholar 

  20. Heitz A, Carnat A, Fraisse D, Carnat AP, Lamaison JL (2000) Luteolin 3′-glucuronide, the major flavonoid from Melissa officinalis subsp. officinalis. Fitoterapia 71(2):201–202

    PubMed  CAS  Google Scholar 

  21. Hsiung SC, Adlersberg M, Arango V, Mann JJ, Tamir H, Liu KP (2003) Attenuated 5-HT1A receptor signaling in brains of suicide victims: involvement of adenylyl cyclase, phosphatidylinositol 3-kinase, Akt and mitogen-activated protein kinase. J Neurochem 87:182–194. https://doi.org/10.1016/S0169-409X(00)00129-0

    Article  PubMed  CAS  Google Scholar 

  22. Inoki K, Ouyang H, Zhu T, Lindvall C, Wang Y, Zhang X et al (2006) TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3b to regulate cell growth. Cell 126:955–968

    PubMed  CAS  Google Scholar 

  23. Iwaloye O, Elekofehinti OO, Babatomiwa K, Fadipe TM, Akinjiyan MO et al (2020a) Discovery of TCM derived compounds as wild type and mutant Plasmodium falciparum dihydrofolate reductase inhibitors: induced fit docking and ADME studies. Curr Drug Discov Technol. https://doi.org/10.2174/1570163817999200729122753

    Article  PubMed  Google Scholar 

  24. Iwaloye O, Elekofehinti OO, Oluwarotimi EA, Babatomiwa K, Momoh IA (2020b) In silico molecular studies of natural compounds as possible anti-Alzheimer’s agents: ligand-based design. Netw Model Anal Health Inform Bioinform 9:54. https://doi.org/10.1007/s13721-020-00262-7

    Article  Google Scholar 

  25. Kamdem JP, Adeniran A, BoligonAA KCV, Elekofehinti OO, Hassane W, Ibrahimg M, Pansera WE, Meinerza DF, Athayde ML (2013) Antioxidant activity, genotoxicity and cytotoxicity evaluation of lemon balm (Melissa officinalis L.) ethanolic extract: its potential role in neuroprotection. Ind Crops Prod 51:26–34

    CAS  Google Scholar 

  26. Kapetanovic IM (2008) Computer-aided drug discovery and development (CADDD): in silico-chemicobiological approach. Chem Biol Interact 171:165–176

    PubMed  CAS  Google Scholar 

  27. Kitchen DB, Decornez H, Furr JR, Bajorath J (2004) Docking and scoring in virtual screening for drug discovery: methods and applications. Nat Rev Drug Discov 3:935–949

    PubMed  CAS  Google Scholar 

  28. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (2001) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 46(1–3):3–26

    PubMed  CAS  Google Scholar 

  29. Liu X (2014) Overstimulation can create health problems due to increases of PI/3K/Akt/GSK3 insensitivity and GSK3 activity. SpringerPlus 3:356

    PubMed  PubMed Central  Google Scholar 

  30. Liu Z, Liu Y, Zeng G, Shao B, Chen M, Li Z, Jiang Y, Liu Y, Zhang Y, Zhong H (2018) Application of molecular docking for the degradation of organic pollutants in the environmental remediation: a review. Chemosphere 203:139–150

    PubMed  CAS  Google Scholar 

  31. Luo G, Chen L, Burton CR, Xiao H, Sivaprakasam P, Krause CM, Cao Y (2016) Discovery of isonicotinamides as highly selective, brain penetrable, and orally active glycogen synthase kinase-3 inhibitors. J Med Chem 59(3):1041–1051

    PubMed  CAS  Google Scholar 

  32. Maffucci I, Hu X, Fumagalli V, Contini A (2018) An efficient implementation of the Nwat-MMGBSA method to rescore docking results in medium-throughput virtual screenings. Front Chem 6:43. https://doi.org/10.3389/fchem.2018.00043

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Mancinelli R, Capino G, Petrungaro S, Mammola CL, Tomaipitinca L, Filippini A, Facchiano A, Ziparo E, Giampietri C (2017) Multifaceted roles of GSK-3 in cancer and autophagy-related diseases. Oxidative Med Cell Longev 2017:629495. https://doi.org/10.1155/2017/4629495

    Article  CAS  Google Scholar 

  34. Meng XY, Zhang HX, Mezei M, Cui M (2011) Molecular docking: a powerful approach for structure-based drug discovery. Curr Comput Aided Drug Des 7:146–157

    PubMed  PubMed Central  CAS  Google Scholar 

  35. Moradkhani H, Sargsyan E, Bibak H, Naseri B, Sadat-Hosseini M, Fayazi-Barjin A, Meftahizade H (2010) Melissa officinalis L., a valuable medicine plant: a review. J Med Plants Res 4:2753–2759

    CAS  Google Scholar 

  36. Olesen PH, Sørensen AR, Ursø B, Kurtzhals P, Bowler AR, Ehrbar U, Hansen BF (2003) Synthesis and in vitro characterization of 1-(4-Aminofurazan-3-yl)-5-dialkylaminomethyl-1 H-[1,2,3]triazole-4-carboxylic acid derivatives. A new class of selective GSK-3 inhibitors. J Med Chem 46(15):3333–3341

    PubMed  CAS  Google Scholar 

  37. Olsson MHM, Søndergard CR, Rostkowski M, Jensen JH (2011) PROPKA3: consistent treatment of internal and surface residues in empirical pKa predictions. J Chem Theor Comput 7:525–537

    CAS  Google Scholar 

  38. Ożarowski M, Mikolajczak PL, Piasecka A, Kachlicki P, Kujawski R, Bogacz A, Bartkowiak-Wieczorek J, Szulc M, Kaminska E, Kujawska M, JodynisLiebert J, Gryszczynska A, Opala B, Lowicki Z, Seremak-Mrozikiewicz A, Czerny B (2016) Influence of the Melissa officinalisleaf extract on long-term memory in scopolamine animal model with assessment of mechanism of action. Evid Based Complement Altern Med. https://doi.org/10.1155/2016/9729818

    Article  Google Scholar 

  39. Padavala A, Chitti S, Rajesh B, Vinukonda V, Jayanti R, Vali R (2010) In silico based ligand design and docking studies of GSK-3β inhibitors. Chem Bioinform J 10:1–12. https://doi.org/10.1273/cbij.10.1

    Article  Google Scholar 

  40. Patora J, Klimek B (2002) Flavonoids from lemon balm (Melissa officinalis L., Lamiaceae). Acta Pol Pharm 59(2):139–143

    PubMed  CAS  Google Scholar 

  41. Prime (2018) version 3.9, Schrodinger, LLC, New York

  42. Ring DB, Johnson KW, Henriksen EJ, Nuss JM, Goff D, Kinnick TR (2003) Selective glycogen synthase kinase 3 inhibitors potentiate insulin activation of glucose transport and utilization in vitro and in vivo. Diabetes 52:588–595

    PubMed  CAS  Google Scholar 

  43. Robertson LA, Kim AJ, Werstuck GH (2006) Mechanisms linking diabetes mellitus to the development of atherosclerosis: a role for endoplasmic reticulum stress and glycogen synthase kinase-3. Can J Pharmacol 84(1):39–48. https://doi.org/10.1139/Y05-142

    Article  CAS  Google Scholar 

  44. Sachs L (1984) Applied statistics: a handbook of techniques. Springer, Berlin

    Google Scholar 

  45. Saitoh M, Kunitomo J, Kimura E, Washita HI et al (2009) 2-{3-[4-(Alkylsulfinyl)phenyl]-1 -benzofuran-5-yl}-5-methyl-1,3,4-oxadiazole derivatives as novel inhibitors of glycogen synthase kinase-3β with good brain permeability. J Med Chem 52(20):6270–6286

    PubMed  CAS  Google Scholar 

  46. Sander T, Freyss J, von Korff M, Rufener C (2005) Datawarrior: an open-source program for chemistry aware data visualization and analysis. J Chem Inf Model 55:460–473

    Google Scholar 

  47. Schrödinger Suite (2012) Protein Preparation Wizard; Epik version 2.3, Schrödinger, LLC, New York, NY, 2012; Impact version 5.8, Schrödinger, LLC, New York, NY, 2012; Prime version 3.1, Schrödinger, LLC, New York, NY, 2012.

  48. Senderski ME (2009) Melisa lekarska, in: Zioła. Praktycznyporadnik o ziołachiziołolecznictwie. Wydawnictwo K.E. Liber. Warszawa, pp 422–426

  49. Sherman W, Day T, Jacobson MP, Friesner RA, Farid R (2006) Novel procedure for modeling ligand/receptor induced fit effects. J Med Chem 49:534–553

    PubMed  CAS  Google Scholar 

  50. Smith E, Frenkel B (2005) Glucocorticoids inhibit the transcriptional activity of LEF/TCF in differentiating osteoblasts in a glycogen synthase kinase-3beta-dependent and -independent manner. J Biol Chem 280:2388–2394

    PubMed  CAS  Google Scholar 

  51. Smith DG, Buffet M, Fenwick AE, Haigh D, Ife RJ, Saunders M, Slingsby BP, Stacey R, Ward RW (2001) 3-Anilino-4-arylmaleimides: potent and selective inhibitors of glycogen synthase kinase-3 (GSK-3). Bioorg Med Chem Lett 11:635–639

    PubMed  CAS  Google Scholar 

  52. Sofowora A, Ogunbodede E, Onayade A (2013) The role and place of medicinal plants in the strategies for disease prevention. Afr J Tradit Complement Altern Med 10:210–229

    PubMed  PubMed Central  Google Scholar 

  53. Sun H, Li Y, Shen M, Tian S, Xu L, Pan P et al (2014) Assessing the performance of the MM/PBSA and MM/GBSA methods. 5, improved docking performance using high solute dielectric constant MM/GBSA and MM/PBSA rescoring. Phys Chem Chem Phys 1(6):22035–22045. https://doi.org/10.1039/c4cp03179b

    Article  Google Scholar 

  54. Tagashira M, Ohtake Y (1998) New antioxidative 1,3-benzodioxole from Melissa officinalis. Planta Med 64(6):555–558

    CAS  Google Scholar 

  55. Takahashi YF, Sasaguri T (2009) Drug development targeting the glycogen synthasekinase-3beta (GSK-3beta)-mediated signal transduction pathway: inhibitors of the Wnt/beta-catenin signaling pathway as novel anticancer drugs. J Pharmacol Sci 109:179–183

    Google Scholar 

  56. Terrence LS, Andrew JP, Joyce AB, Scott D et al (2006) Synthesis and evaluation of novel heterocyclic inhibitors of GSK-3. Bioorg Mel Chem Lett 16(18):2091–2094

    Google Scholar 

  57. Triantaphyllou K, Blekas G, Boskou D (2001) Antioxidative properties of water extracts obtained from herbs of the species Lamiaceae. Int J Food Sci Nutr 52(4):313–317

    PubMed  CAS  Google Scholar 

  58. Witherington J, Bordas V, Gaiba A, Naylor A, Rawlings AD, Slingsby BP, Smith DG, TakleAK WRW (2003) 6-heteroaryl-pyrazolo[3,4-b]pyridines: potent and selective inhibitors of glycogen synthase kinase-3 (GSK-3). Bioorg Med Chem Lett 13:3059–3062

    PubMed  CAS  Google Scholar 

  59. Wold S, Ericksson L (1998) Partial least squares projections to latent structures (PLS) in chemistry. In: Ragu P, Schleyer P (eds) Encyclopedia of computational chemistry, vol 3. Wiley, Chichester, pp 2006–2021

    Google Scholar 

  60. Xie H, Wen H, Zhang D et al (2017) Designing of dual inhibitors for GSK-3beta and CDK5: virtual screening and in vitro biological activities study. Oncotarget 8(11):18118–18128

    PubMed  PubMed Central  Google Scholar 

  61. Xu C, Kim NG, Gumbiner BM (2009) Regulation of protein stability by GSK3 mediated phosphorylation. Cell Cycle 8:4032–4039

    PubMed  PubMed Central  CAS  Google Scholar 

  62. Yasri A, Hartsough DJ (2001) Toward an optimal procedure for variable selection and QSAR modeling building. Chem Inf Comput Sci 41:1218–1227. https://doi.org/10.1021/ci010291a

    Article  CAS  Google Scholar 

  63. Yuki Y, Chikashi I (2015) Inhibition of glycogen synthase kinase-3 beta induces apoptosis and mitotic catastrophe by disrupting centrosome regulation in cancer cells. Nat Sci Rep 5:13249. https://doi.org/10.1038/srep13249

    Article  CAS  Google Scholar 

  64. Zarei A, Ashtiyani SC, Taheri S, Hosseini N (2015) A brief overview of the effects of Melissa officinalis L. extract on the function of various body organs. J Res Med Sci 17(7):1–6

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Opeyemi Iwaloye.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Iwaloye, O., Elekofehinti, O.O., Oluwarotimi, E.A. et al. Insight into glycogen synthase kinase-3β inhibitory activity of phyto-constituents from Melissa officinalis: in silico studies. In Silico Pharmacol. 8, 2 (2020). https://doi.org/10.1007/s40203-020-00054-x

Download citation

Keywords

  • Melissa officinalis
  • Glycogen synthase kinase-3β
  • AutoQSAR
  • MM-GBSA
  • Induced-fit docking (IFD)