In Silico Pharmacology

, 6:11 | Cite as

Identification of potential drug targets and inhibitor of the pathogenic bacteria Shigella flexneri 2a through the subtractive genomic approach

  • Arafat Rahman Oany
  • Mamun Mia
  • Tahmina Pervin
  • Md. Nazmul Hasan
  • Akinori Hirashima
Original Research


Shigella flexneri 2a is one of the most pathogenic bacteria among the Shigella spp., which is responsible for dysentery and causes masses of deaths throughout the world per year. A proper identification of the potential drug targets and inhibitors is crucial for the treatment of the shigellosis due to their emerging multidrug resistance (MDR) patterns. In this study, a systematic subtractive approach was implemented for the identification of novel therapeutic targets of S. flexneri 2a (301) through genome-wide metabolic pathway analysis of the essential genes and proteins. Ligand-based virtual screening and ADMET analyses were also made for the identification of potential inhibitors as well. Initially, we found 70 essential unique proteins as novel targets. After subsequent prioritization, finally we got six unique targets as the potential therapeutic targets and their three-dimensional models were built thereafter. Aspartate-β-semialdehyde dehydrogenase (ASD), was the most potent target among them and used for docking analysis through ligand-based virtual screening. The compound 3 (PubChem CID: 11319750) suited well as the best inhibitor of the ASD through ADMET and enzyme inhibition capacity analysis. To end, we hope that our proposed therapeutic targets and its inhibitors might give some breakthrough to treat shigellosis efficiently in in vitro.


ADMET Molecular docking ASD MDR Dysentery 



Authors’ declares no acknowledgements for this work.


No funding was received

Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Supplementary material

40203_2018_48_MOESM1_ESM.docx (161 kb)
Supplementary material 1 (DOCX 161 kb)
40203_2018_48_MOESM2_ESM.docx (623 kb)
Supplementary material 2 (DOCX 623 kb)
40203_2018_48_MOESM3_ESM.docx (21 kb)
Supplementary material 3 (DOCX 21 kb)
40203_2018_48_MOESM4_ESM.docx (30 kb)
Supplementary material 4 (DOCX 30 kb)
40203_2018_48_MOESM5_ESM.docx (29 kb)
Supplementary material 5 (DOCX 28 kb)
40203_2018_48_MOESM6_ESM.docx (14 kb)
Supplementary material 6 (DOCX 14 kb)
40203_2018_48_MOESM7_ESM.docx (17 kb)
Supplementary material 7 (DOCX 17 kb)


  1. Agüero F, Al-Lazikani B, Aslett M, Berriman M, Buckner FS, Campbell RK, Carmona S, Carruthers IM, Chan AE, Chen F (2008) Genomic-scale prioritization of drug targets: the TDR targets database. Nat Rev Drug Discov 7:900–907CrossRefPubMedPubMedCentralGoogle Scholar
  2. Allsop AE (1998) Bacterial genome sequencing and drug discovery. Curr Opin Biotechnol 9:637–642CrossRefPubMedGoogle Scholar
  3. Amineni U, Pradhan D, Marisetty H (2010) In silico identification of common putative drug targets in Leptospira interrogans. J Chem Biol 3:165–173CrossRefPubMedPubMedCentralGoogle Scholar
  4. Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 2:195–201CrossRefGoogle Scholar
  5. Bairoch A, Apweiler R (2000) The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000. Nucleic Acids Res 28:45–48CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bakheet TM, Doig AJ (2009) Properties and identification of human protein drug targets. Bioinformatics 25:451–457CrossRefPubMedGoogle Scholar
  7. Barh D, Kumar A (2009) In silico identification of candidate drug and vaccine targets from various pathways in Neisseria gonorrhoeae. In Silico Biol 9:225–231PubMedGoogle Scholar
  8. Bennish ML, Wojtyniak BJ (1991) Mortality due to shigellosis: community and hospital data. Rev Infect Dis 13:245–251CrossRefGoogle Scholar
  9. Bolton EE, Wang Y, Thiessen PA, Bryant SH (2008) PubChem: integrated platform of small molecules and biological activities. Annu Rep Comput Chem 4:217–241CrossRefGoogle Scholar
  10. Carroll AR, Ngo A, Quinn RJ, Redburn J, Hooper JN (2005) Petrosamine B, an inhibitor of the helicobacter pylori enzyme aspartyl semialdehyde dehydrogenase from the Australian Sponge Oceanapia sp. J Nat Prod 68:804–806CrossRefPubMedGoogle Scholar
  11. Chan JN, Nislow C, Emili A (2010) Recent advances and method development for drug target identification. Trends Pharmacol Sci 31:82–88CrossRefPubMedGoogle Scholar
  12. Cheng F, Li W, Zhou Y, Shen J, Wu Z, Liu G, Lee PW, Tang Y (2012) admetSAR: a comprehensive source and free tool for assessment of chemical ADMET properties. ACS Publications, New York, pp 3099–3105Google Scholar
  13. Damte D, Suh JW, Lee SJ, Yohannes SB, Hossain MA, Park SC (2013) Putative drug and vaccine target protein identification using comparative genomic analysis of KEGG annotated metabolic pathways of Mycoplasma hyopneumoniae. Genomics 102:47–56CrossRefPubMedGoogle Scholar
  14. Davies M, Dedman N, Hersey A, Papadatos G, Hall MD, Cucurull-Sanchez L, Jeffrey P, Hasan S, Eddershaw PJ, Overington JP (2015) ADME SARfari: comparative genomics of drug metabolizing systems. Bioinformatics 31:1695–1697CrossRefPubMedPubMedCentralGoogle Scholar
  15. Deshpande N, Addess KJ, Bluhm WF, Merino-Ott JC, Townsend-Merino W, Zhang Q, Knezevich C, Xie L, Chen L, Feng Z (2005) The RCSB Protein Data Bank: a redesigned query system and relational database based on the mmCIF schema. Nucleic Acids Res 33:D233–D237CrossRefPubMedGoogle Scholar
  16. Duffield M, Cooper I, McAlister E, Bayliss M, Ford D, Oyston P (2010) Predicting conserved essential genes in bacteria: in silico identification of putative drug targets. Mol BioSyst 6:2482–2489CrossRefPubMedGoogle Scholar
  17. Dundas J, Ouyang Z, Tseng J, Binkowski A, Turpaz Y, Liang J (2006) CASTp: computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues. Nucleic Acids Res 34:W116–W118CrossRefPubMedPubMedCentralGoogle Scholar
  18. DuPont HL, Hornick RB, Dawkins AT, Snyder MJ, Formal SB (1969) The response of man to virulent Shigella flexneri 2a. J Infect Dis 119:296–299CrossRefPubMedGoogle Scholar
  19. DuPont DL, LevineMM Hornick RB, Formal SB (1989) Inoculum size in shigellosis and implications for expected mode of transmission. J Infect Dis 159:1126–1128CrossRefPubMedGoogle Scholar
  20. Dutta S, Rajendran K, Roy S, Chatterjee A, Dutta P, Nair G, Bhattacharya S, Yoshida S (2002) Shifting serotypes, plasmid profile analysis and antimicrobial resistance pattern of shigellae strains isolated from Kolkata, India during 1995–2000. Epidemiol Infect 129:235–243CrossRefPubMedPubMedCentralGoogle Scholar
  21. Eichner ER, Gangarosa EJ, Goldsby JB (1968) The current status of shigellosis in the United States. Am J Public Health Nations Health 58:753–763CrossRefPubMedPubMedCentralGoogle Scholar
  22. Fasano A, Noriega FR, Maneval D Jr, Chanasongcram S, Russell R, Guandalini S, Levine MM (1995) Shigella enterotoxin 1: an enterotoxin of Shigella flexneri 2a active in rabbit small intestine in vivo and in vitro. J Clin Investig 95:2853CrossRefPubMedGoogle Scholar
  23. Franceschini A, Szklarczyk D, Frankild S, Kuhn M, Simonovic M, Roth A, Lin J, Minguez P, Bork P, Von Mering C (2012) STRING v9. 1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res 41:D808–D815CrossRefPubMedPubMedCentralGoogle Scholar
  24. Galperin MY, Koonin EV (1999) Searching for drug targets in microbial genomes. Curr Opin Biotechnol 10:571–578CrossRefPubMedGoogle Scholar
  25. Gao Z, Li H, ZhangH Liu X, Kang L, Luo X, Zhu W, Chen K, Wang X, Jiang H (2008) PDTD: a web-accessible protein database for drug target identification. BMC Bioinform 9:104CrossRefGoogle Scholar
  26. Gardy JL, Laird MR, Chen F, Rey S, Walsh C, Ester M, Brinkman FS (2004) PSORTb v. 2.0: expanded prediction of bacterial protein subcellular localization and insights gained from comparative proteome analysis. Bioinformatics 21:617–623CrossRefPubMedGoogle Scholar
  27. Garza-Mayers AC, Miller KA, Russo BC, Nagda DV, Goldberg MB (2015) Shigella flexneri regulation of ARF6 activation during bacterial entry via an IpgD-mediated positive feedback loop. MBio 6:e02584–e02614CrossRefPubMedPubMedCentralGoogle Scholar
  28. Gasteiger E, Hoogland C, Gattiker A, Duvaud SE, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy server. Humana Press, New York, pp 571–607Google Scholar
  29. Gerdes S, Scholle M, Campbell J, Balazsi G, Ravasz E, Daugherty M, Somera A, Kyrpides N, Anderson I, Gelfand M (2003) Experimental determination and system level analysis of essential genes in Escherichia coli MG1655. J Bacteriol 185:5673–5684CrossRefPubMedPubMedCentralGoogle Scholar
  30. Gupta A, Polyak CS, Bishop RD, Sobel J, Mintz ED (2004) Laboratory-confirmed shigellosis in the United States, 1989–2002: epidemiologic trends and patterns. Clin Infect Dis 38:1372–1377CrossRefPubMedGoogle Scholar
  31. Guruprasad K, Reddy BB, Pandit MW (1990) Correlation between stability of a protein and its dipeptide composition: a novel approach for predicting in vivo stability of a protein from its primary sequence. Protein Eng Des Sel 4:155–161CrossRefGoogle Scholar
  32. Hale TL, Keusch GT (1996) ShigellaGoogle Scholar
  33. Hasan MN, Oany AR, Hirashima A (2016) Comparative structure analysis of tyramine-β-hydroxylase from fruit fly and ADME/T-based profiling of 1-arylimidazole-2 (3H)-thiones as potential inhibitors. Int J Anal Bio-Sci 4:37–45Google Scholar
  34. Irwin BK, Shoichet BK (2005) ZINC—a free database of commercially available compounds for virtual screening. J Chem Inf Model 45:177–182CrossRefPubMedPubMedCentralGoogle Scholar
  35. Jennison AV, Verma NK (2004) Shigella flexneri infection: pathogenesis and vaccine development. FEMS Microbiol Rev 28:43–58CrossRefPubMedGoogle Scholar
  36. Jin Q, Yuan Z, Xu J, Wang Y, Shen Y, Lu W, Wang J, Liu H, Yang J, Yang F (2002) Genome sequence of Shigella flexneri 2a: insights into pathogenicity through comparison with genomes of Escherichia coli K12 and O157. Nucleic Acids Res 30:4432–4441CrossRefPubMedPubMedCentralGoogle Scholar
  37. Johnson M, Zaretskaya I, Raytselis Y, Merezhuk Y, McGinnis S, Madden TL (2008) NCBI BLAST: a better web interface. Nucleic Acids Res 36:W5–W9CrossRefPubMedPubMedCentralGoogle Scholar
  38. Kanehisa M, Goto S, Hattori M, Aoki-Kinoshita KF, Itoh M, Kawashima S, Katayama T, Araki M, Hirakawa M (2006) From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res 34:D354–D357CrossRefGoogle Scholar
  39. Kanehisa M, Goto S, Furumichi M, Tanabe M, Hirakawa M (2009) KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Res 38:D355–D360CrossRefPubMedPubMedCentralGoogle Scholar
  40. Kobayashi K, Ehrlich SD, Albertini A, Amati G, Andersen K, Arnaud M, Asai K, Ashikaga S, Aymerich S, Bessieres P (2003) Essential Bacillus subtilis genes. Proc Natl Acad Sci 100:4678–4683CrossRefPubMedGoogle Scholar
  41. Koonin EV, Tatusov RL, Galperin MY (1998) Beyond complete genomes: from sequence to structure and function. Curr Opin Struct Biol 8:355–363CrossRefPubMedGoogle Scholar
  42. Kotloff KL, Winickoff JP, Ivanoff B, Clemens JD, Swerdlow DL, Sansonetti PJ, Adak G, Levine M (1999) Global burden of Shigella infections: implications for vaccine development and implementation of control strategies. Bull World Health Organ 77:651PubMedPubMedCentralGoogle Scholar
  43. Lange BM, Rujan T, Martin W, Croteau R (2000) Isoprenoid biosynthesis: the evolution of two ancient and distinct pathways across genomes. Proc Natl Acad Sci 97:13172–13177CrossRefPubMedGoogle Scholar
  44. Laskowski RA, Rullmann JAC, MacArthur MW, Kaptein R, Thornton JM (1996) AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J Biomol NMR 8:477–486CrossRefPubMedGoogle Scholar
  45. Lipinski CA (2004) Lead-and drug-like compounds: the rule-of-five revolution. Drug Discov Today Technol 1:337–341CrossRefPubMedGoogle Scholar
  46. Liu T, Lin Y, Wen X, Jorissen RN, Gilson MK (2006) BindingDB: a web-accessible database of experimentally determined protein–ligand binding affinities. Nucleic Acids Res 35:D198–D201CrossRefPubMedPubMedCentralGoogle Scholar
  47. Magrane M (2011) UniProt Knowledgebase: a hub of integrated protein data. DatabaseGoogle Scholar
  48. Mei Y, Liu H, Xu J (1989) Cloning and application of genus specific DNA probes for Shigella. Chin J Epidemiol 10:167–170Google Scholar
  49. Oany SAI, Ahmad SAI, Kibria KK, Hossain MU, Jyoti TP (2014a) A hypothetical protein of Alteromonas macleodii AltDE1 (amad1_06475) predicted to be a cold-shock protein with RNA chaperone activity. Gene Regul Syst Biol 8:141–147Google Scholar
  50. Oany AR, Emran AA, Jyoti TP (2014b) Design of an epitope-based peptide vaccine against spike protein of human coronavirus: an in silico approach. Drug Des Dev Ther 8:1139–1149CrossRefGoogle Scholar
  51. Oany AR, Jyoti TP, Ahmad SAI (2014c) An in silico approach for characterization of an aminoglycoside antibiotic-resistant methyltransferase protein from Pyrococcus furiosus (DSM 3638). Bioinform Biol Insights 8:65–72CrossRefPubMedPubMedCentralGoogle Scholar
  52. Oany AR, Pervin T, Mia M, Hossain M, Shahnaij M, Mahmud S, Kibria K (2017) Vaccinomics approach for designing potential peptide vaccine by targeting Shigella spp. serine protease autotransporter subfamily protein SigA. J Immunol ResGoogle Scholar
  53. O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR (2011) Open Babel: an open chemical toolbox. J Cheminf 3:33CrossRefGoogle Scholar
  54. Oprea TI (2000) Property distribution of drug-related chemical databases. J Comput Aided Mol Des 14:251–264CrossRefPubMedGoogle Scholar
  55. Perdomo O, Cavaillon J, Huerre M, Ohayon H, Gounon P, Sansonetti P (1994) Acute inflammation causes epithelial invasion and mucosal destruction in experimental shigellosis. J Exp Med 180:1307–1319CrossRefPubMedGoogle Scholar
  56. Peter-Katalinić J (2005) Methods in enzymology: O-glycosylation of proteins. Methods Enzymol 405:139–171CrossRefPubMedGoogle Scholar
  57. Philpott DJ, Edgeworth JD, Sansonetti PJ (2000) The pathogenesis of Shigella flexneri infection: lessons from in vitro and in vivo studies. Philos Trans R Soc Lond B Biol Sci 355:575–586CrossRefPubMedPubMedCentralGoogle Scholar
  58. Pieper U, Eswar N, Davis FP, Braberg H, Madhusudhan MS, Rossi A, Marti-Renom M, Karchin R, Webb BM, Eramian D (2006) MODBASE: a database of annotated comparative protein structure models and associated resources. Nucleic Acids Res 34:D291–D295CrossRefPubMedGoogle Scholar
  59. Rahman MA, Noore MS, Hasan MA, Ullah MR, Rahman MH, Hossain MA, Ali Y, Islam MS (2014) Identification of potential drug targets by subtractive genome analysis of Bacillus anthracis A0248: an in silico approach. Comput Biol Chem 52:66–72CrossRefPubMedGoogle Scholar
  60. Sakamoto Y, Furukawa S, Ogihara H, Yamasaki M (2003) Fosmidomycin resistance in adenylate cyclase deficient (cya) mutants of Escherichia coli. Biosci Biotechnol Biochem 67:2030–2033CrossRefPubMedGoogle Scholar
  61. Šali A, Potterton L, Yuan F, van Vlijmen H, Karplus M (1995) Evaluation of comparative protein modeling by MODELLER. Proteins Struct Funct Bioinform 23:318–326CrossRefGoogle Scholar
  62. Sander T (2001) OSIRIS property explorer. Org Chem PortalGoogle Scholar
  63. Sangari FJ, Pérez-Gil J, Carretero-Paulet L, García-Lobo JM, Rodríguez-Concepción M (2010) A new family of enzymes catalyzing the first committed step of the methylerythritol 4-phosphate (MEP) pathway for isoprenoid biosynthesis in bacteria. Proc Natl Acad Sci 107:14081–14086CrossRefPubMedGoogle Scholar
  64. Schrödinger L (2012) QikProp, version 3.5. New York, NYGoogle Scholar
  65. Schrödinger LLC (2015) The PyMOL Molecular Graphics System, version 1.8Google Scholar
  66. Scott WR, Hünenberger PH, Tironi IG, Mark AE, Billeter SR, Fennen J, Torda AE, Huber T, Krüger P, van Gunsteren WF (1999) The GROMOS biomolecular simulation program package. J Phys Chem A 103:3596–3607CrossRefGoogle Scholar
  67. Small P, Blankenhorn D, Welty D, Zinser E, Slonczewski JL (1994) Acid and base resistance in Escherichia coli and Shigella flexneri: role of rpoS and growth pH. J Bacteriol 176:1729–1737CrossRefPubMedPubMedCentralGoogle Scholar
  68. Stumm G, Russ A, Nehls M (2002) Deductive genomics. Am J Pharmacogenom 2:263–271CrossRefGoogle Scholar
  69. Talukder KA, Khajanchi BK, Islam MA, Dutta DK, Islam Z, Safa A, Khan G, Alam K, Hossain M, Malla S (2004) Genetic relatedness of ciprofloxacin-resistant Shigella dysenteriae type 1 strains isolated in south Asia. J Antimicrob Chemother 54:730–734CrossRefPubMedGoogle Scholar
  70. Talukder KA, Khajanchi BK, Islam MA, Islam Z, Dutta DK, Rahman M, Watanabe H, Nair GB, Sack DA (2006) Fluoroquinolone resistance linked to both gyrA and parC mutations in the quinolone resistance-determining region of Shigella dysenteriae type 1. Curr Microbiol 52:108–111CrossRefPubMedGoogle Scholar
  71. Tatusov RL, Koonin EV, Lipman DJ (1997) A genomic perspective on protein families. Science 278:631–637CrossRefPubMedGoogle Scholar
  72. Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31:455–461PubMedPubMedCentralGoogle Scholar
  73. Unni S, Huang Y, Hanson RM, Tobias M, Krishnan S, Li WW, Nielsen JE, Baker NA (2011) Web servers and services for electrostatics calculations with APBS and PDB2PQR. J Comput Chem 32:1488–1491CrossRefPubMedPubMedCentralGoogle Scholar
  74. US Department of Health, Education, and Welfare, Public Health Service, National Communicable Disease Center (1968) Shigella surveillance report no. 15Google Scholar
  75. Wirth M, Zoete V, Michielin O, Sauer WH (2012) SwissBioisostere: a database of molecular replacements for ligand design. Nucleic Acids Res 41:D1137–D1143CrossRefPubMedPubMedCentralGoogle Scholar
  76. Wishart DS, Knox C, Guo AC, Cheng D, Shrivastava S, Tzur D, Gautam B, Hassanali M (2007) DrugBank: a knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Res 36:D901–D906CrossRefPubMedPubMedCentralGoogle Scholar
  77. Yu CS, Lin CJ, Hwang JK (2004) Predicting subcellular localization of proteins for Gram-negative bacteria by support vector machines based on n-peptide compositions. Protein Sci 13:1402–1406CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Biotechnology and Genetic Engineering, Life Science FacultyMawlana Bhashani Science and Technology UniversityTangailBangladesh
  2. 2.Biotechnology and Genetic Engineering Discipline, Life Science SchoolKhulna UniversityKhulnaBangladesh
  3. 3.Department of Genetic Engineering and BiotechnologyJessore University of Science and TechnologyJessoreBangladesh
  4. 4.Laboratory of Pesticide Chemistry, Division of Molecular Biosciences, Department of Bioscience and Biotechnology, Faculty of AgricultureKyushu UniversityFukuokaJapan

Personalised recommendations