In Silico Pharmacology

, 6:2 | Cite as

Molecular modeling of inhibitors against fructose bisphosphate aldolase from Candida albicans

  • Andréia Lima de Amorim
  • Alan Vitor Morais de Lima
  • Ana Carolina de Almeida do Rosário
  • Érica Tailana dos Santos Souza
  • Jaderson Vieira Ferreira
  • Lorane Izabel da Silva Hage-Melim
Original Research
  • 44 Downloads

Abstract

Candida albicans is an opportunistic pathogen that causes from vulvovaginal and oropharyngeal candidiasis to systemic infections. The enzyme 1,6-fructose bisphosphate aldolase class II (FBA II), is a macromolecule existing only in lower organisms, being essential for the survival of the pathogen due to its function of maintaining the glycolysis process. The aim of this paper was to evaluate the inhibitors of FBA II regarding their physicochemical, pharmacokinetic and toxicological properties and apply concepts of rational drug development to propose new compounds for the treatment of fungal infections of C. albicans. Physicochemical (HyperChem software and the webserver cactus) and ADME/Tox (PreADMET webserver) properties were calculated to four inhibitors described in the literature and three analogues. None of the compounds presented in this study violated RO5, however all inhibitors demonstrated low or moderate human intestinal absorption (HIA), as well as low or moderate permeability in Caco-2 and MDCK, poor plasma proteins binding (PPB) and low permeability of the blood–brain barrier (BBB); however, Compound 4 is the exception for BBB permeability, being also the only non-mutagenic compound, and therefore, used as a lead compound. Analogues B and C presented high HIA, weak PPB and low BBB permeability, as well as a positive prediction for carcinogenicity in rats and mouse and non-mutagenicity in the Ames test. Through the evaluations carried out, it was concluded that the analogues B and C have proved to be promising candidates for oral administration drugs in the treatment of fungal infections of the genus Candida.

Keywords

Candida albicans Fructose bisphosphate Aldolase Molecular modeling Treatment 

References

  1. Abreu PA (2011) Estudo de alvos terapêuticos e ligantes em doenças neurodegenerativas e neuroinfecções por modelagem molecular. Thesis, Universidade Federal FluminenseGoogle Scholar
  2. Afonso IF (2008) Modelagem Molecular e Avaliação da Relação Estrutura-Atividade Acoplados a Estudos Farmacocinéticos e Toxicológicos in silico de Derivados Heterocíclicos com Atividade Antimicrobiana. Dissertation, Universidade Federal do Rio de JaneiroGoogle Scholar
  3. Álvares CA, Svldzlnski TIE, Consolaro MEL (2007) Candidíase vulvovaginal: fatores predisponentes do hospedeiro e virulência das leveduras. J Bras Patol Méd Lab 43:319–327Google Scholar
  4. Barbosa MS (2015) Tratamento homeopático da candidíase vulvovaginal recorrente: Revisão da bibliografia e relato de casos. Monography. Centro Alpha de Ensino, São PauloGoogle Scholar
  5. Buzzi FC (2007) Síntese de novas moléculas com potencial terapêutico: imidas cíclicas, chalconas e compostos relacionados. Thesis, Universidade Federal de Santa CatarinaGoogle Scholar
  6. Cardoso TS (2013) Papel do ATP na infeção de Macrófagos por Candida albicans. Dissertation, Universidade de CoimbraGoogle Scholar
  7. Castro TL, Coutinho HDM, Gedeon CC, Santos JM, Santana WJ, Souza LBS (2006) Mecanismos de resistência da Candida sp. WWA antifúngicos. Infarma 18:30–33Google Scholar
  8. Cavalheiro RA, (2003) Estudo de metabolismo de energia em leveduras de interesse médico. Dissertation, Universidade Estadual de CampinasGoogle Scholar
  9. ChemBioOffice Ultra for Windows (2014) CambridgeSoft Corp.Google Scholar
  10. Chemplus ((2000)) Mod ular extensions for HyperChem Release 6.02, Molecular Modeling for Windows, HyperClub, Inc., GainesvilleGoogle Scholar
  11. Daher R, Coinçon M, Fonvielle M, Gest PM, Gueri ME, Jackson M, Sygusch J, Therisod M (2010) Rational design, synthesis and evaluation of new selective inhibitors of microbial class II (zinc dependent) fructose bisphosphate aldolases. J Med Chem 53:7836–7842CrossRefPubMedPubMedCentralGoogle Scholar
  12. Dror O, Shulman-Peleg A, Nussinov R, Wolfson HJ (2004) Predicting molecular interactions in silico: I. A guide to pharmacophore identification and its applications to drug desing. Curr Med Chem 11:71–90CrossRefPubMedGoogle Scholar
  13. Etgeton AS, Chassot F, Boer CG, Donatti L, Svidzinski TI, Consolaro ME (2011) Influência da co-agregação entre Candida albicans e Lactobacillus acidophilus na capacidade de adesão destes microrganismos às células epiteliais vaginais humanas (CEVH). Acta Sci Health Sci 33:1–8Google Scholar
  14. Favalessa OC, Martins MA, Hahn RC (2010) Aspectos micológicos e suscetibilidade in vitro de leveduras do gênero Candida em pacientes HIV-positivos provenientes do Estado de Mato Grosso. Rev Soc Bras Med Trop 43:673–677CrossRefPubMedGoogle Scholar
  15. Fonvielle M, Weber P, Dabkowska K, Therisod M (2004) New highly selective inhibitors of class II fructose-1,6-bisphosphate aldolases. Bioorg Med Chem Lett 14:2923–2926CrossRefPubMedGoogle Scholar
  16. Galves FR (2011) Modelos in vitro para previsão de absorção gastrointestinal empregados no desenvolvimento de novos fármacos. Monography, Universidade Federal do Rio Grande do SulGoogle Scholar
  17. Han X, Zhu X, Zhu S, Wei L, Hong Z, Guo L, Chen H, Chi B, Liu Y, Feng L, Ren Y, Wan J (2015) A rational design, synthesis, biological evaluation and structure–activity relationship study of novel inhibitors against cyanobacterial fructose-1,6-bisphosphate aldolase. J Chem Inf, ModelGoogle Scholar
  18. Irvine JD, Takahashi L, Lockhart K, Cheong J, Tolan JW, Selick HE, Grove JR (1999) MDCK (Madin–Darby Canine Kidney) cells: a tool for membrane permeability screening. J Pharma Sci 88:28–33CrossRefGoogle Scholar
  19. Junior NN (2013) Diferenças estruturais e “docking” receptor-ligante da proteína E7 do vírus do papiloma humano (HPV) de alto e baixo riscos para o câncer cervical. Thesis, Universidade de São PauloGoogle Scholar
  20. Kabir MA, Hussain MA, Ahmad Z (2012) Candida albicans: a model organism for studying fungal pathogens. International Scholarly Research NetworkGoogle Scholar
  21. Korolkovas A, Burckhalter JH (1998) Química Farmacêutica, 1st edn. Guanabara Koogan, São PauloGoogle Scholar
  22. Labbé G, Krismanich AP, Groot S, Rasmusson T, Shang M, Brown MDR, Dmitrienko I, Guillemette JG (2012) Development of metal-chelating inhibitors for the Class II fructose 1,6 bisphosphate (FBP) aldolase. J Inorg Biochem 112:49–58CrossRefPubMedGoogle Scholar
  23. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (1997) Experimental and computacional approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Del Rev 23:3–25CrossRefGoogle Scholar
  24. Macêdo DPC, Farias AMA, Neto RGL, Silva VKA, Leal AFG, Neves RP (2009) Infecções oportunistas por leveduras e perfil enzimático dos agentes etiológicos. Rev Soc Bras Med Trop 42:188–191CrossRefPubMedGoogle Scholar
  25. Magalhães UO (2009) Modelagem molecular e avaliação da relação estrutura atividade acoplados a estudos físico-químicos, farmacocinéticos e toxicológicos in silico de derivados heterocíclicos com atividade leishmanicida. Dissertation, Universidade Federal do Rio de JaneiroGoogle Scholar
  26. Moda TL (2007) Desenvolvimento de modelos in silico de propriedades de ADME para triagem de novos candidatos a fármacos. Dissertation, Universidade de São PauloGoogle Scholar
  27. OSRA: Optical Structure Recongnition. http://cactus.nci.nih.gov/osra/
  28. Patrick GL (2009) An introduction to Medicinal Chemistry, 4th edn. Oxford University Press, New YorkGoogle Scholar
  29. Rodrigues FJJ (2009) Avaliação de compostos com atividade inibidora da glicoproteína-P. Dissertation, Universidade da MadeiraGoogle Scholar
  30. Santos RCB (2010) Avaliação do efeito protetor da Frutose-1,6-bisfosfato na sepse induzida por Candida albicans em camundongos. Thesis, Pontifícia Universidade Católica do rio Grande do SulGoogle Scholar
  31. Schneidman-Duhovny D, Dror O, Inbar Y, Nussinov R, Wolfson HJ (2008) PharmaGist: a webserver for ligand-based pharmacophore detection. Nucleic Acids Res 36:1–6CrossRefGoogle Scholar
  32. Serracarbassa PD, Dotto P (2003) Endoftalmite por Candida albicans. Arq Bras Oftalmol 66:701–707CrossRefGoogle Scholar
  33. Silva VB (2008) Estudos de modelagem molecular e relação estrutura atividade da oncoproteína hnRNP K e ligantes. Dissertation, Universidade de São PauloGoogle Scholar
  34. Souza GN, Vieira TCSB, Campos AAS, Leite APL, Souza E (2012) Tratamento das vulvovaginites na gravidez. Femina 40:1–4Google Scholar
  35. Tortora GJ, Funke BR, Case LC (2012) Microbiologia, 10th edn. Artemed, Porto AlegreGoogle Scholar
  36. Volpe DA (2011) Drug-permeability and transporter assays in Caco-2 and MDCK cell lines. Future Med Chem 3:2063–2077CrossRefPubMedGoogle Scholar
  37. Yamashita F, Hashida M (2004) In silico approaches for predicting ADME properties of drugs. Drug Metab Pharmacokinet 19:327–338CrossRefPubMedGoogle Scholar
  38. Zhao X, Oh SH, Cheng G, Green CB, Nuessen JA, Yater K, Leng RP, Brown AJP, Hoyer LL (2004) Als3 e Als8 representam o único local que codifica a adesão de Candida albicans: comparações funcionais entre Als3 e Als1. Microbiology 50:2415–2428CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Andréia Lima de Amorim
    • 1
  • Alan Vitor Morais de Lima
    • 2
  • Ana Carolina de Almeida do Rosário
    • 2
  • Érica Tailana dos Santos Souza
    • 2
  • Jaderson Vieira Ferreira
    • 2
  • Lorane Izabel da Silva Hage-Melim
    • 2
  1. 1.Grupo de Biocatálise e Biotransformação de Compostos OrgânicosUniversidade Federal do AmapáMacapáBrazil
  2. 2.Laboratório de Química Farmacêutica e Medicinal (PharMedChem)Universidade Federal do AmapáMacapáBrazil

Personalised recommendations