In Silico Pharmacology

, 6:3 | Cite as

Molecular docking and ADME properties of bioactive molecules against human acid-beta-glucosidase enzyme, cause of Gaucher’s disease

  • Vijayakumar Subramaniyan
  • Sathiya Mathiyalagan
  • Arulmozhi Praveenkumar
  • Prabhu Srinivasan
  • Manogar Palani
  • Vinothkannan Ravichandran
  • Parameswari Nallasamy
Original Research


Gaucher disease is one of the common lysosomal storage diseases widespread all over the world. It is divided into three types such as type 1 (non-neuropathic), type 2 (acute infantile neuropathic) and type 3 (chronic neuropathic). This is caused by the deficiency of glucocerebrosidases from the midpoint nervous system. Recent years, computational tools are very important and play a vital role in identifying new leads for disease treatment. This study was performed to screen the effective bioactive molecules against glucocerebrosidases. In this study, Molecular docking and ADME profiles of bioactive molecules were found with the help of Schrödinger software. Results showed that, (−)-epicatechin are having best docking score and good binding affinity than other ligands. Hence, we concluded that the (−)-epicatechin may be a better drug candidate for gaucher disease which can be explored further.


Acid β-glucosidase Bioactive molecules Molecular docking ADME profile 


  1. Alanís AD, Calzada F, Cedillo-Rivera R, Meckes M (2003) Antiprotozoal activity of the constituents of Rubus coriifolius. Phytother Res 17:681–682CrossRefPubMedGoogle Scholar
  2. Barton NW, Brady RO, Dambrosia JM, Di Bisceglie AM, Doppelt SH, Hill SC, Mankin HJ, Murray GJ, Parker RI, Argoff CE (1991) Replacement therapy for inherited enzyme deficiency—macrophage-targeted glucocerebrosidase for Gaucher’s disease. N Engl J Med 19:1464–1470CrossRefGoogle Scholar
  3. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The Protein Data Bank. Nucleic Acids Res 28: 235–242. Accessed 1971
  4. Beutler E, Grabowski GA (2001) Gaucher disease. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular bases of inherited disease, 8th edn. McGraw-Hill, New York, pp 3635–3668Google Scholar
  5. Bhatia Y, Mishra S, Bisaria VS (2002) Microbial betaglucosidases: cloning, properties, and applications. Crit Rev Biotechnol 22:375–407CrossRefPubMedGoogle Scholar
  6. Bissantz C, Kuhn B, Stahl MA (2010) Medicinal chemist’s guide to molecular interactions. J Med Chem 53:5061–5084CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bohm HJ (2003) Prediction of non-bonded interactions in drug design. In: Bohm HJ, Schneider G (eds) Protein-ligand interactions: from molecular recognition to drug design. WILLEY-VCH Verlag GmbH & Co. KGaA, WeinhamCrossRefGoogle Scholar
  8. Brady RO, Kanfer JN, Shapiro D (1965) Metabolism of glucocerebrosides. II. Evidence of an enzymatic deficiency in Gaucher’s disease. Biochem Biophys Res Commun 18:221–225CrossRefPubMedGoogle Scholar
  9. Brady RO, Kanfer JN, Bradley RM, Shapiro D (1966) Demonstration of a deficiency of glucocerebroside-cleaving enzyme in Gaucher’s disease. J Clin Investig 45:1112–1115CrossRefPubMedGoogle Scholar
  10. Cairns JRK, Esen A (2010) β-Glucosidases. Cell Mol Life Sci 67:3389–3405CrossRefGoogle Scholar
  11. Chan LP, Chou TH, Ding HY, Chen PR, Chiang FY, Kuo PL, Liang CH (2012) Apigenin induces apoptosis via tumor necrosis factor receptor- and Bcl-2-mediated pathway and enhances susceptibility of head and neck squamous cell carcinoma to 5-fluorouracil and cisplatin. Biochim Biophys Acta 1820:1081–1091CrossRefPubMedGoogle Scholar
  12. Chobot V, Huber C, Trettenhahn G, Hadacek F (2009) (±)-Catechin: chemical weapon, antioxidant, or stress regulator. J Chem Ecol 35:980–996CrossRefPubMedPubMedCentralGoogle Scholar
  13. Drummond EM, Harbourne N, Marete E, Jacquier JC, O'Riordan D, Gibney ER (2013) An in vivo study examining the antiinflammatory effects of chamomile, meadowsweet, and willow bark in a novel functional beverage. J Diet Suppl 10:370–380CrossRefPubMedGoogle Scholar
  14. Erlejman AG, Jaggers G, Fraga CG, Oteiza PI (2008) TNF alpha-induced NFkappaB activation and cell oxidant production are modulated by hexameric procyanidins in Caco-2 cells. Arch Biochem Biophys 476:186–195CrossRefPubMedGoogle Scholar
  15. Fajemiroye JO, Ferreira NL, de Oliveira LP, Elusiyan CA, Pedrino GR, da Cunha LC, da Conceição EC (2016) Matricaria recutita and its isolate-apigenin: economic value, ethnopharmacology and chemico-biological profiles in retrospect. J Pharma Phytochem 4:17–31Google Scholar
  16. Glide, module 4.4 module (2012) Schrodinger, LLC, New YorkGoogle Scholar
  17. Grabowski GA, Barton NW, Pastores G, Dambrosia JM, Banerjee TK, McKee MA, Parker C, Schiffmannn R, Hill SC, Brady RO (1995) Enzyme therapy in type 1 Gaucher disease: comparative efficacy of mannose-terminated glucocerebrosidase from natural and recombinant sources. Ann Intern Med 122:33–39CrossRefPubMedGoogle Scholar
  18. Granado-Serrano AB, Martín MA, Haegeman G, Goya L, Bravo L, Ramos S (2010) Epicatechin induces NF-kappaB, activator protein-1 (AP-1) and nuclear transcription factor erythroid 2p45-related factor-2 (Nrf2) via phosphatidylinositol3-kinase/protein kinase B (PI3K/AKT) and extracellular regulated kinase (ERK) signalling in HepG2 ce. Br J Nutr 103:168–179CrossRefPubMedGoogle Scholar
  19. Ha SK, Lee P, Park JA, Oh HR, Lee SY, Park JH, Lee EH, Ryu JH, Lee KR, Kim SY (2008) Apigenin inhibits the production of NO and PGE2 in microglia and inhibits neuronal cell death in a middle cerebral artery occlusion-induced focal ischemia mice model. Neurochem Int 52:878–886CrossRefPubMedGoogle Scholar
  20. Havsteen BH (2002) The biochemistry and medicinal significance of the flavonoids. Pharmacol Ther 96:67–202CrossRefPubMedGoogle Scholar
  21. Hollak CE, Aerts JM, Goudsmit R, Phoa SS, Ek M, van Weely S (1995) Individualised low-dose alglucerase therapy for type 1. Gaucher’s disease. Lancet 345:1474–1478CrossRefPubMedGoogle Scholar
  22. Hollman PC, Katan MB (1999) Health effects and bioavailability of dietary flavonols. Free Radical Res 31:S75–S80Google Scholar
  23. Horowitz M, Zimran A (1994) Mutations causing Gaucher disease. Hum Mutat 3:1–11CrossRefPubMedGoogle Scholar
  24. Hubbard RE, Haider MK (2010) Hydrogen bonds in proteins: role and strength. In: Encyclopedia of life sciences (ELS), John Wiley & Sons, Ltd, Chichester.
  25. Husain FM, Ahmad I, Al-thubiani AS, Abulreesh HH, AlHazza IM, Aqil F (2017) Leaf Extracts of Mangifera indica L. Inhibit Quorum Sensing – Regulated Production of Virulence Factors and Biofilm in Test Bacteria. Front Microbiol.
  26. Kim D, Jeong S, Weon L, Chang Y (2003) Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chem 81:321–326CrossRefGoogle Scholar
  27. Kirakosyan A, Seymour E, Kaufman PB, Warber S, Bolling S, Chang SC (2003) Antioxidant capacity of polyphenolic extracts from leaves of Crataegus laevigata and Crataegus monogyna (Hawthorn) subjected to drought and cold stress. J Agric Food Chem 51:3973–3976CrossRefPubMedGoogle Scholar
  28. Koo H, Pearson SK, Scott-Anne K, Abranches J, Cury JA, Rosalen PL, Park YK, Marquis RE, Bowen WH (2002) Effects of apigenin and tt-farnesol on glucosyltransferase activity, biofilm viability and caries development in rats. Oral Microbiol Immunol 17:337–343CrossRefPubMedGoogle Scholar
  29. Krafft BA, Skaret G, Calise L (2011) DocumentWG-EMM-11/23. CCAMLR, HobartGoogle Scholar
  30. Kumar S, Sharmal A (2006) Apigenin: the anxiolytic constituent of Turnera afrodisíaca. Pharm Biol 44:84–90CrossRefGoogle Scholar
  31. Landolfi R, Mower RL, Steiner M (1984) Modification of platelet function and arachidonic acid metabolism by bioflavonoids. Structure–activity relations. Biochem Pharmacol 33:1525–1530CrossRefPubMedGoogle Scholar
  32. Li R, Zhao D, Qu R, Fu Q, Ma S (2015) The effects of apigenin on lipopolysaccharide- induced depressive-like behavior in mice. Neurosci Lett 594:17–22CrossRefPubMedGoogle Scholar
  33. Ligprep, module 4.4 (2012) Schrodinger, LLC, New YorkGoogle Scholar
  34. Liu H, Ke W, Wei K, K, Hua Z (2013) The impact of IT capabilities on firm performance: the mediating roles of absorptive capacity and supply chain agility. Decis Support Syst 54:1452–1462Google Scholar
  35. Lu J, Chiang J, Iyer RR, Thompson E, Kaneski CR, David S, Yang C, Chen M, Richard J, Hodes B, Russell R (2010) Decreased glucocerebrosidase activity in Gaucher disease parallels quantitative enzyme loss due to abnormal interaction with TCP1 and c-Cbl. Proc Nat Acad Sci USA 107:21665–21670CrossRefPubMedGoogle Scholar
  36. Mafuvadze B, Liang Y, Besch-Williford C, Zhang X, Hyder SM (2012) Apigenin induces apoptosis and blocks growth of medroxyprogesterone acetate-dependent BT-474 xenograft tumors. Horm Cancer 3:160–171CrossRefPubMedGoogle Scholar
  37. Mankin HJ, Rosenthal DI, Xavier R (2001) Gaucher disease. New approaches to an ancient disease. J Bone Jt Surg Am 83:748–762CrossRefGoogle Scholar
  38. Mistry PK, Smith SJ, Ali M, Cox TM, Hatton CSR, McIntyre N (1992) Genetic diagnosis of Gaucher’s disease. Lancet 339:889–892CrossRefPubMedGoogle Scholar
  39. Monsalve B, Meyer AC, Palomo I, Fuentes E (2017) Mechanisms of Endothelial Protection by Natural Bioactive Compounds from Fruit and Vegetables. Anais Academia Brasil Cienc 89:615–633Google Scholar
  40. Mondal SK, Mondal NB, Banerjee B, Mazumder UK (2009) Determination of drug-like properties of a novel antileishmanial compound: in vitro absorption, distribution, metabolism, and excretion studies. Indian J Pharmacol 41:176–181CrossRefPubMedPubMedCentralGoogle Scholar
  41. Murali KS, Sivasubramanian S, Vincent S, Murugan SB, Giridaran B, Dinesh S, Gunasekaran P, Krishnasamy K, Sathishkumar R (2015) Anti-chikungunya activity of luteolin and apigenin rich fraction from Cynodon dactylon. Asian Pac J Trop Med 8:352–358CrossRefGoogle Scholar
  42. Muruganandan S, Gupta S, Kataria M, Lal J, Gupta PK (2002) Mangiferin protects the streptozotocin-induced oxidative damage to cardiac and renal tissues in rats. Toxicology 176:165–173CrossRefPubMedGoogle Scholar
  43. Muruganandan S, Srinivasan K, Gupta S, Gupta PK, Lal J (2005) Effect of mangiferin on hyperglycemia and atherogenicity in streptozotocin diabetic rats. J Ethnopharmacol 97:497–501CrossRefPubMedGoogle Scholar
  44. Nicholas C, Batra S, Vargo MA, Voss OH, Gavrilin MA, Wewers MD, Guttridge DC, Grotewold E, Doseff AI (2007) Apigenin blocks lipopolysaccharide-induced lethality in vivo and proinflammatory cytokines expression by inactivating NF-kappaB through the suppression of p65 phosphorylation. J Immunol 179:7121–7127CrossRefPubMedGoogle Scholar
  45. Ohno M, Shibata C, Kishikawa T, Yoshikawa T, Takata A, Kojima K, Akanuma M, Kang YJ, Yoshida H, Otsuka M, Koike K (2013) The flavonoid apigenin improves glucose tolerance through inhibition of microRNA maturation in miRNA103 transgenic mice. Sci Rep 3:2553CrossRefPubMedPubMedCentralGoogle Scholar
  46. Pajouhesh H, Lenz GR (2005) Medicinal chemical properties of successful central nervous system drugs. NeuroRx 2:541–553CrossRefPubMedPubMedCentralGoogle Scholar
  47. Pandey RK, Verma P, Sharma D, Bhatt TK, Sundar S, Prajapati V (2016) High-throughput virtual screening and quantum mechanics approach to develop imipramine analogues as leads against trypanothione reductase of leishmania. Biomed Pharmacother 83:141–152CrossRefPubMedGoogle Scholar
  48. Parvez GMM (2016) Pharmacological activities of mango (Mangifera indica): a review. J Pharma Phytochem 3:01–07Google Scholar
  49. Patil SP, Jain PD, Sancheti JS, Ghumatkar PJ, Tambe R, Sathaye S (2014) Neuroprotective and neurotrophic effects of Apigenin and Luteolin in MPTP induced parkinsonism in mice. Neuropharmacol 86:192–202CrossRefGoogle Scholar
  50. Paul A, Vibhuti A, Raj S (2016) Molecular docking NS4B of DENV 1-4 with known bioactive phyto-chemicals. Bioinformatics 3:140–148Google Scholar
  51. Prabhu S, Vijayakumar S, Manogar P, Maniam GP, Natanamurugaraj G (2017) Homology modeling and molecular docking studies on type II diabetes complications reduced PPARg receptor with various ligand molecules. Biomed Pharmacother 92:528–535CrossRefPubMedGoogle Scholar
  52. Qi S-H, Wu D-G, Ma Y-B, Luo X-D (2003) A Novel flavane from Carapa guianensis. Acta Bot Sin 45:1129–1133Google Scholar
  53. Quikprop, module 4.4 (2012) Schrodinger suite, New YorkGoogle Scholar
  54. Ramiro-Puig E, Castell M (2009) Cocoa: antioxidant and immunomodulator. Br J Nutr 101:931–940CrossRefPubMedGoogle Scholar
  55. Rodgers EH, Grant MH (1998) The effect of the flavonoids, quercetin, myricetin and epicatechin on the growth and enzyme activities of MCF7 human breast cancer cells. Chem Biol Interact 116:213–228CrossRefPubMedGoogle Scholar
  56. Rouillard LF, Thiais AJ, Robin JR (1998) Cosmetic or pharmaceutical composition containing, as active ingredient, mangiferin or its derivatives, in pure or in plant extracts. US Patent 824,320Google Scholar
  57. Sánchez GM, Re L, Giuliani A, Núñez-Sellés AJ, Davison GP, León-Fernández OS (2000) Protective effects of Mangifera indica L. extract, mangiferin and selected antioxidants against TPA-induced biomolecules oxidation and peritoneal macrophage activation in mice. Pharmacol Res 42:565–573CrossRefPubMedGoogle Scholar
  58. Sannella AR, Messori L, Casini A, Vincieri FF, Bilia AR, Majori G, Severini C (2007) Antimalarial properties of green tea. Biochem Biophys Res Commun 353:177–181CrossRefPubMedGoogle Scholar
  59. Schiffmann R, Fitzgibbon EJ, Harris C, DeVile C, Davies EH, Abel L, van Schaik IN, Benko W, Timmons M, Ries M, Vellodi A (2008) Randomized, controlled trial of miglustat in Gaucher’s disease type 3. Ann Neurol 64:514–522CrossRefPubMedPubMedCentralGoogle Scholar
  60. Schrodinger, LLC, New York (2012)Google Scholar
  61. Schueler UH, Kolter T, Kaneski CR, Blusztajn JK, Herkenham M, Sandhoff V (2003) Toxicity of glucosylsphingosine (glucopsychosine) to cultured neuronal cells: a model system for assessing neuronal damage in Gaucher disease type 2 and 3. Neurobiol Dis 14:595–601CrossRefPubMedGoogle Scholar
  62. Sithisarn P, Michaelis M, Schubert-Zsilavecz M, Cinatl J (2013) Differential antiviral and anti-inflammatory mechanisms of the flavonoids biochanin A and baicalein in H5N1 influenza A virus-infected cells. Antivir Res 97:41–48CrossRefPubMedGoogle Scholar
  63. Stone DL, Tayebi N, Orvisky E, Stubblefield B, Madike V, Sidransky E (2000) Glucocerebrosidase gene mutations in patients with type 2 Gaucher disease. Hum Mutat 15:181–188CrossRefPubMedGoogle Scholar
  64. Thorpe GW, Fong CS, Alic N, Higgins VJ, Dawes LW (2004) Cells have distinct mechanisms to maintain protection against different reactive oxygen species: oxidative-stress-response genes. PNAS 101:6564–6569CrossRefPubMedGoogle Scholar
  65. Vijayakumar S, Manogar P, Prabhu S, Singh SK (2017) Novel ligand-based docking; molecular dynamic simulations; and absorption, distribution, metabolism, and excretion approach to analyzing potential acetylcholinesterase inhibitors for Alzheimer’s disease. J Pharma Anal. CrossRefGoogle Scholar
  66. Xue Y, Song X, Yu J (2009) Overexpression of β-glucosidase from Thermotoga maritima for the production of highly purified aglycone isoflavones from soy flour. World J Microbiol Biotechnol 25:2165–2172CrossRefGoogle Scholar
  67. Zahir AA, Rahuman AA, Bagavan A, Geetha K, Kamaraj C, Elango G (2011) Evaluation of medicinal plant extracts and isolated compound epicatechin from Ricinus communis against Paramphistomum cervi. Parasitol Res 111:1629–1635CrossRefPubMedGoogle Scholar
  68. Zhang N, Yacoub E, Zhu XH, Ugurbil K, Chen W (2009) Linearity of Blood-Oxygenation-Level Dependent Signal at Microvasculature. Neuroimage 2:313–318Google Scholar
  69. Zhang F, Li F, Chen G (2014) Neuroprotective effect of apigenin in rats after contusive spinal cord injury. Neurol Sci 35:583–588CrossRefPubMedGoogle Scholar
  70. Zhao M, Ma J, Zhu HY, Zhang XH, Du ZY, Xu YJ, Yu XD (2011) Apigenin inhibits proliferation and induces apoptosis in human multiple myeloma cells through targeting the trinity of CK2, Cdc37 and Hsp90. Mol Cancer 29:104CrossRefGoogle Scholar
  71. Zhao L, Wang JL, Wang YR, Fa XZ (2013a) Apigenin attenuates copper-mediated β-amyloid neurotoxicity through antioxidation, mitochondrion protection and MAPK signal inactivation in an AD cell model. Brain Res 1492:33–45CrossRefPubMedGoogle Scholar
  72. Zhao H, Joo S, Xie W, Ji X (2013b) Using hormetic strategies to improve ischemic preconditioning and postconditioning against stroke. Int J Physiol Pathophysiol Pharmacol 2:61–72Google Scholar
  73. Zheng MS, Lu ZY (1990) Antiviral effect of mangiferin and isomangiferin on herpes simplex virus. Chin Med J (Engl) 103:160–165Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Vijayakumar Subramaniyan
    • 1
  • Sathiya Mathiyalagan
    • 1
    • 2
    • 3
  • Arulmozhi Praveenkumar
    • 1
    • 2
    • 3
  • Prabhu Srinivasan
    • 1
  • Manogar Palani
    • 1
  • Vinothkannan Ravichandran
    • 2
  • Parameswari Nallasamy
    • 3
  1. 1.Computational Phytochemistry Lab, P.G. and Research Department of Botany and MicrobiologyA.V.V.M. Sri Pushpam College (Autonomous)Thanjavur (Dt)India
  2. 2.State Key Laboratory of Microbial Technology, Helmholtz Institute of Biotechnology, School of Life ScienceShandong UniversityJinanPeople’s Republic of China
  3. 3.Department of ZoologyArulmigu Palani Andavar College of Arts and CulturePalaniIndia

Personalised recommendations