Impact of protein–ligand solvation and desolvation on transition state thermodynamic properties of adenosine A2A ligand binding kinetics

Abstract

Ligand–protein binding kinetic rates are growing in importance as parameters to consider in drug discovery and lead optimization. In this study we analysed using surface plasmon resonance (SPR) the transition state (TS) properties of a set of six adenosine A2A receptor inhibitors, belonging to both the xanthine and the triazolo-triazine scaffolds. SPR highlighted interesting differences among the ligands in the enthalpic and entropic components of the TS energy barriers for the binding and unbinding events. To better understand at a molecular level these differences, we developed suMetaD, a novel molecular dynamics (MD)—based approach combining supervised MD and metadynamics. This method allows simulation of the ligand unbinding and binding events. It also provides the system conformation corresponding to the highest energy barrier the ligand is required to overcome to reach the final state. For the six ligands evaluated in this study their TS thermodynamic properties were linked in particular to the role of water molecules in solvating/desolvating the pocket and the small molecules. suMetaD identified kinetic bottleneck conformations near the bound state position or in the vestibule area. In the first case the barrier is mainly enthalpic, requiring the breaking of strong interactions with the protein. In the vestibule TS location the kinetic bottleneck is instead mainly of entropic nature, linked to the solvent behaviour.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Barducci A, Bussi G, Parrinello M (2008) Well-tempered metadynamics: a smoothly converging and tunable free-energy method. Phys Rev Lett 100:020603. https://doi.org/10.1103/PhysRevLett.100.020603

    Article  PubMed  Google Scholar 

  2. Barducci A, Bonomi M, Parrinello M (2011) Metadynamics: metadynamics. Wiley Interdiscip Rev Comput Mol Sci 1:826–843. https://doi.org/10.1002/wcms.31

    CAS  Article  Google Scholar 

  3. Borea PA, Varani K, Gessi S, Merighi S, Dal Piaz A, Gilli P et al (2004) Receptor binding thermodynamics at the neuronal nicotinic receptor. Curr Top Med Chem 4:361–368

    CAS  Article  PubMed  Google Scholar 

  4. Bortolato A, Deflorian F, Weiss DR, Mason JS (2015) Decoding the role of water dynamics in ligand-Protein unbinding: CRF 1 R as a test case. J Chem Inf Model 55:1857–1866. https://doi.org/10.1021/acs.jcim.5b00440

    CAS  Article  PubMed  Google Scholar 

  5. Branduardi D, Gervasio FL, Parrinello M (2007) From A to B in free energy space. J Chem Phys 126:54103. https://doi.org/10.1063/1.2432340

    Article  Google Scholar 

  6. Branduardi D, Bussi G, Parrinello M (2012) Metadynamics with adaptive Gaussians. J Chem Theory Comput 8:2247–2254. https://doi.org/10.1021/ct3002464

    CAS  Article  PubMed  Google Scholar 

  7. Bui JM, Henchman RH, McCammon JA (2003) The dynamics of ligand barrier crossing inside the acetylcholinesterase gorge. Biophys J 85:2267–2272. https://doi.org/10.1016/S0006-3495(03)74651-7

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. Bussi G, Donadio D, Parrinello M (2007) Canonical sampling through velocity rescaling. J Chem Phys 126:14101. https://doi.org/10.1063/1.2408420

    Article  Google Scholar 

  9. Carpenter B, Nehmé R, Warne T, Leslie AGW, Tate CG (2016) Structure of the adenosine A2A receptor bound to an engineered G protein. Nature 536:104–107. https://doi.org/10.1038/nature18966

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. Congreve M, Andrews SP, Doré AS, Hollenstein K, Hurrell E, Langmead CJ et al (2012) Discovery of 1,2,4-triazine derivatives as adenosine A2A antagonists using structure based drug design. J Med Chem 55:1898–1903. https://doi.org/10.1021/jm201376w

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. Copeland RA (2015) The drug–target residence time model: a 10-year retrospective. Nat Rev Drug Discov 15:87–95. https://doi.org/10.1038/nrd.2015.18

    Article  PubMed  Google Scholar 

  12. Copeland RA, Pompliano DL, Meek TD (2006) Drug–target residence time and its implications for lead optimization. Nat Rev Drug Discov 5:730–739. https://doi.org/10.1038/nrd2082

    CAS  Article  PubMed  Google Scholar 

  13. Cuzzolin A, Sturlese M, Deganutti G, Salmaso V, Sabbadin D, Ciancetta A et al (2016) Deciphering the complexity of ligand-protein recognition pathways using supervised molecular dynamics (SuMD) simulations. J Chem Inf Model 56:687–705. https://doi.org/10.1021/acs.jcim.5b00702

    CAS  Article  PubMed  Google Scholar 

  14. Dahl G, Akerud T (2013) Pharmacokinetics and the drug–target residence time concept. Drug Discov Today 18:697–707. https://doi.org/10.1016/j.drudis.2013.02.010

    CAS  Article  PubMed  Google Scholar 

  15. Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N log(N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092. https://doi.org/10.1063/1.464397

    CAS  Article  Google Scholar 

  16. Doré AS, Robertson N, Errey JC, Ng I, Hollenstein K, Tehan B et al (2011) Structure of the adenosine A2A receptor in complex with ZM241385 and the xanthines XAC and caffeine. Structure 19:1283–1293. https://doi.org/10.1016/j.str.2011.06.014

    Article  PubMed  PubMed Central  Google Scholar 

  17. Dror RO, Pan AC, Arlow DH, Borhani DW, Maragakis P, Shan Y et al (2011) Pathway and mechanism of drug binding to G-protein-coupled receptors. Proc Natl Acad Sci 108:13118–13123. https://doi.org/10.1073/pnas.1104614108

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. Du X, Li Y, Xia Y-L, Ai S-M, Liang J, Sang P et al (2016) Insights into protein-ligand interactions: mechanisms, models, and methods. Int J Mol Sci 17:144. https://doi.org/10.3390/ijms17020144

    Article  PubMed Central  Google Scholar 

  19. Federico S, Paoletta S, Cheong SL, Pastorin G, Cacciari B, Stragliotto S et al (2011) Synthesis and biological evaluation of a new series of 1,2,4-triazolo[1,5-a]-1,3,5-triazines as human A2A adenosine receptor antagonists with improved water solubility. J Med Chem 54:877–889. https://doi.org/10.1021/jm101349u

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. Federico S, Ciancetta A, Porta N, Redenti S, Pastorin G, Cacciari B et al (2016) 5,7-Disubstituted-[1,2,4]triazolo[1,5- a][1,3,5]triazines as pharmacological tools to explore the antagonist selectivity profiles toward adenosine receptors. Eur J Med Chem 108:529–541. https://doi.org/10.1016/j.ejmech.2015.12.019

    CAS  Article  PubMed  Google Scholar 

  21. Fink JS, Weaver DR, Rivkees SA, Peterfreund RA, Pollack AE, Adler EM et al (1992) Molecular cloning of the rat A2 adenosine receptor: selective co-expression with D2 dopamine receptors in rat striatum. Brain Res Mol Brain Res 14:186–195

    CAS  Article  PubMed  Google Scholar 

  22. Frederick KK, Marlow MS, Valentine KG, Wand AJ (2007) Conformational entropy in molecular recognition by proteins. Nature 448:325–329. https://doi.org/10.1038/nature05959

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT et al (2004) Glide: a new approach for rapid, accurate docking and scoring 1 method and assessment of docking accuracy. J Med Chem 47:1739–1749. https://doi.org/10.1021/jm0306430

    CAS  Article  PubMed  Google Scholar 

  24. Fukunishi H, Watanabe O, Takada S (2002) On the Hamiltonian replica exchange method for efficient sampling of biomolecular systems: application to protein structure prediction. J Chem Phys 116:9058–9067. https://doi.org/10.1063/1.1472510

    CAS  Article  Google Scholar 

  25. Gervasio FL, Laio A, Parrinello M (2005) Flexible docking in solution using metadynamics. J Am Chem Soc 127:2600–2607. https://doi.org/10.1021/ja0445950

    CAS  Article  PubMed  Google Scholar 

  26. Ghosh E, Kumari P, Jaiman D, Shukla AK (2015) Methodological advances: the unsung heroes of the GPCR structural revolution. Nat Rev Mol Cell Biol 16:69–81. https://doi.org/10.1038/nrm3933

    CAS  Article  PubMed  Google Scholar 

  27. Guo D, Pan AC, Dror RO, Mocking T, Liu R, Heitman LH et al (2016) Molecular basis of ligand dissociation from the adenosine A2A receptor. Mol Pharmacol 89:485–491. https://doi.org/10.1124/mol.115.102657

    CAS  Article  PubMed  Google Scholar 

  28. Guo D, Heitman LH, IJzerman AP (2017) Kinetic aspects of the interaction between ligand and G protein-coupled receptor: the case of the adenosine receptors. Chem Rev 117:38–66. https://doi.org/10.1021/acs.chemrev.6b00025

    CAS  Article  PubMed  Google Scholar 

  29. Halgren TA, Murphy RB, Friesner RA, Beard HS, Frye LL, Pollard WT et al (2004) Glide: a new approach for rapid, accurate docking and scoring 2 enrichment factors in database screening. J Med Chem 47:1750–1759. https://doi.org/10.1021/jm030644s

    CAS  Article  PubMed  Google Scholar 

  30. Hamelberg D, Mongan J, McCammon JA (2004) Accelerated molecular dynamics: a promising and efficient simulation method for biomolecules. J Chem Phys 120:11919–11929. https://doi.org/10.1063/1.1755656

    CAS  Article  PubMed  Google Scholar 

  31. Hino T, Arakawa T, Iwanari H, Yurugi-Kobayashi T, Ikeda-Suno C, Nakada-Nakura Y et al (2012) G-protein-coupled receptor inactivation by an allosteric inverse-agonist antibody. Nature. https://doi.org/10.1038/nature10750

    PubMed  PubMed Central  Google Scholar 

  32. Hothersall JD, Brown AJ, Dale I, Rawlins P (2016) Can residence time offer a useful strategy to target agonist drugs for sustained GPCR responses? Drug Discov Today 21:90–96. https://doi.org/10.1016/j.drudis.2015.07.015

    CAS  Article  PubMed  Google Scholar 

  33. Hulme EC, Trevethick MA (2010) Ligand binding assays at equilibrium: validation and interpretation: equilibrium binding assays. Br J Pharmacol 161:1219–1237. https://doi.org/10.1111/j.1476-5381.2009.00604.x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. Isralewitz B, Gao M, Schulten K (2001) Steered molecular dynamics and mechanical functions of proteins. Curr Opin Struct Biol 11:224–230

    CAS  Article  PubMed  Google Scholar 

  35. Jaakola V-P, Griffith MT, Hanson MA, Cherezov V, Chien EYT, Lane JR et al (2008) The 26 angstrom crystal structure of a human A2A adenosine receptor bound to an antagonist. Science 322:1211–1217. https://doi.org/10.1126/science.1164772

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. Jacobson KA, Gao Z-G (2006) Adenosine receptors as therapeutic targets. Nat Rev Drug Discov 5:247–264. https://doi.org/10.1038/nrd1983

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. Jacobson MP, Pincus DL, Rapp CS, Day TJF, Honig B, Shaw DE et al (2004) A hierarchical approach to all-atom protein loop prediction. Proteins Struct Funct Bioinform 55:351–367. https://doi.org/10.1002/prot.10613

    CAS  Article  Google Scholar 

  38. Jakalian A, Jack DB, Bayly CI (2002) Fast, efficient generation of high-quality atomic charges AM1-BCC model: II parameterization and validation. J Comput Chem 23:1623–1641. https://doi.org/10.1002/jcc.10128

    CAS  Article  PubMed  Google Scholar 

  39. Jämbeck JPM, Lyubartsev AP (2012) Derivation and systematic validation of a refined all-atom force field for phosphatidylcholine lipids. J Phys Chem B 116:3164–3179. https://doi.org/10.1021/jp212503e

    Article  PubMed  PubMed Central  Google Scholar 

  40. Kenakin T, Christopoulos A (2012) Signalling bias in new drug discovery: detection, quantification and therapeutic impact. Nat Rev Drug Discov 12:205–216. https://doi.org/10.1038/nrd3954

    Article  PubMed  Google Scholar 

  41. Laio A, Parrinello M (2002) Escaping free-energy minima. Proc Natl Acad Sci 99:12562–12566. https://doi.org/10.1073/pnas.202427399

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. Laio A, Rodriguez-Fortea A, Gervasio FL, Ceccarelli M, Parrinello M (2005) Assessing the accuracy of metadynamics. J Phys Chem B 109:6714–6721. https://doi.org/10.1021/jp045424k

    CAS  Article  PubMed  Google Scholar 

  43. Lebon G, Warne T, Edwards PC, Bennett K, Langmead CJ, Leslie AGW et al (2011) Agonist-bound adenosine A2A receptor structures reveal common features of GPCR activation. Nature 474:521–525. https://doi.org/10.1038/nature10136

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. Lebon G, Edwards PC, Leslie AGW, Tate CG (2015) Molecular determinants of CGS21680 binding to the human adenosine A2A receptor. Mol Pharmacol 87:907–915. https://doi.org/10.1124/mol.114.097360

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. Li W (2005) Possible pathway(s) of testosterone egress from the active site of cytochrome P450 2B1: a steered molecular dynamics simulation. Drug Metab Dispos 33:910–919. https://doi.org/10.1124/dmd.105.004200

    CAS  Article  PubMed  Google Scholar 

  46. Lindorff-Larsen K, Piana S, Palmo K, Maragakis P, Klepeis JL, Dror RO et al (2010) Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins. https://doi.org/10.1002/prot.22711

    PubMed  PubMed Central  Google Scholar 

  47. Liu W, Chun E, Thompson AA, Chubukov P, Xu F, Katritch V et al (2012) Structural basis for allosteric regulation of GPCRs by sodium ions. Science 337:232–236. https://doi.org/10.1126/science.1219218

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. Luitz MP, Zacharias M (2014) Protein-ligand docking using Hamiltonian replica exchange simulations with soft core potentials. J Chem Inf Model 54:1669–1675. https://doi.org/10.1021/ci500296f

    CAS  Article  PubMed  Google Scholar 

  49. Marchi M, Ballone P (1999) Adiabatic bias molecular dynamics: a method to navigate the conformational space of complex molecular systems. J Chem Phys 110:3697–3702. https://doi.org/10.1063/1.478259

    CAS  Article  Google Scholar 

  50. Mollica L, Decherchi S, Zia SR, Gaspari R, Cavalli A, Rocchia W (2015) Kinetics of protein-ligand unbinding via smoothed potential molecular dynamics simulations. Sci Rep 5:11539. https://doi.org/10.1038/srep11539

    Article  PubMed  PubMed Central  Google Scholar 

  51. Mollica L, Theret I, Antoine M, Perron-Sierra F, Charton Y, Fourquez J-M et al (2016) Molecular dynamics simulations and kinetic measurements to estimate and predict protein-ligand residence times. J Med Chem 59:7167–7176. https://doi.org/10.1021/acs.jmedchem.6b00632

    CAS  Article  PubMed  Google Scholar 

  52. Nguyen ATN, Baltos J-A, Thomas T, Nguyen TD, Munoz LL, Gregory KJ et al (2016) Extracellular loop 2 of the adenosine A1 receptor has a key role in orthosteric ligand affinity and agonist efficacy. Mol Pharmacol 90:703–714. https://doi.org/10.1124/mol.116.105007

    CAS  Article  PubMed  Google Scholar 

  53. Pan AC, Borhani DW, Dror RO, Shaw DE (2013) Molecular determinants of drug–receptor binding kinetics. Drug Discov Today 18:667–673. https://doi.org/10.1016/j.drudis.2013.02.007

    CAS  Article  PubMed  Google Scholar 

  54. Parrinello M, Rahman A (1981) Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys 52:7182–7190. https://doi.org/10.1063/1.328693

    CAS  Article  Google Scholar 

  55. Patel JS, Berteotti A, Ronsisvalle S, Rocchia W, Cavalli A (2014) Steered molecular dynamics simulations for studying protein-ligand interaction in cyclin-dependent kinase 5. J Chem Inf Model 54:470–480. https://doi.org/10.1021/ci4003574

    CAS  Article  PubMed  Google Scholar 

  56. Pierce LCT, Salomon-Ferrer R, de Augusto Oliveira F, McCammon JA, Walker RC (2012) Routine access to millisecond time scale events with accelerated molecular dynamics. J Chem Theory Comput 8:2997–3002. https://doi.org/10.1021/ct300284c

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  57. Polosa R, Blackburn MR (2009) Adenosine receptors as targets for therapeutic intervention in asthma and chronic obstructive pulmonary disease. Trends Pharmacol Sci 30:528–535. https://doi.org/10.1016/j.tips.2009.07.005

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  58. Radić Z, Kirchhoff PD, Quinn DM, McCammon JA, Taylor P (1997) Electrostatic influence on the kinetics of ligand binding to acetylcholinesterase distinctions between active center ligands and fasciculin. J Biol Chem 272:23265–23277

    Article  PubMed  Google Scholar 

  59. Rich RL, Myszka DG (2009) Grading the commercial optical biosensor literature—Class of 2008: “The Mighty Binders”. J Mol Recognit 23:1–64. https://doi.org/10.1002/jmr.1004

    Article  Google Scholar 

  60. Rich RL, Errey J, Marshall F, Myszka DG (2011) Biacore analysis with stabilized G-protein-coupled receptors. Anal Biochem 409:267–272. https://doi.org/10.1016/j.ab.2010.10.008

    CAS  Article  PubMed  Google Scholar 

  61. Richardson PJ, Kase H, Jenner PG (1997) Adenosine A2A receptor antagonists as new agents for the treatment of Parkinson’s disease. Trends Pharmacol Sci 18:338–344

    CAS  Article  PubMed  Google Scholar 

  62. Rivera-Oliver M, Díaz-Ríos M (2014) Using caffeine and other adenosine receptor antagonists and agonists as therapeutic tools against neurodegenerative diseases: a review. Life Sci 101:1–9. https://doi.org/10.1016/j.lfs.2014.01.083

    Article  PubMed  PubMed Central  Google Scholar 

  63. Roos H, Karlsson R, Nilshans H, Persson A (1998) Thermodynamic analysis of protein interactions with biosensor technology. J Mol Recognit 11:204–210. https://doi.org/10.1002/(SICI)1099-1352(199812)11:1/6<204:AID-JMR424>3.0.CO;2-T

    CAS  Article  PubMed  Google Scholar 

  64. Sabbadin D, Moro S (2014) Supervised molecular dynamics (SuMD) as a helpful tool to depict GPCR–ligand recognition pathway in a nanosecond time scale. J Chem Inf Model 54:372–376. https://doi.org/10.1021/ci400766b

    CAS  Article  PubMed  Google Scholar 

  65. Sahlan M, Zako T, Tai PT, Ohtaki A, Noguchi K, Maeda M et al (2010) Thermodynamic characterization of the Interaction between prefoldin and group II chaperonin. J Mol Biol 399:628–636. https://doi.org/10.1016/j.jmb.2010.04.046

    CAS  Article  PubMed  Google Scholar 

  66. Schmidtke P, Luque FJ, Murray JB, Barril X (2011) Shielded hydrogen bonds as structural determinants of binding kinetics: application in drug design. J Am Chem Soc 133:18903–18910. https://doi.org/10.1021/ja207494u

    CAS  Article  PubMed  Google Scholar 

  67. Segala E, Guo D, Cheng RKY, Bortolato A, Deflorian F, Doré AS et al (2016) Controlling the dissociation of ligands from the adenosine A2A receptor through modulation of salt bridge strength. J Med Chem 59:6470–6479. https://doi.org/10.1021/acs.jmedchem.6b00653

    CAS  Article  PubMed  Google Scholar 

  68. Seibt BF, Schiedel AC, Thimm D, Hinz S, Sherbiny FF, Müller CE (2013) The second extracellular loop of GPCRs determines subtype-selectivity and controls efficacy as evidenced by loop exchange study at A2 adenosine receptors. Biochem Pharmacol 85:1317–1329. https://doi.org/10.1016/j.bcp.2013.03.005

    CAS  Article  PubMed  Google Scholar 

  69. Shaw DE, Dror RO, Salmon JK, Grossman JP, Mackenzie KM, Bank JA et al (2009) Millisecond-scale molecular dynamics simulations on Anton. In: proc. conf. high perform. Comput Netw Storage Anal SC 09 no. c: 1–11

  70. Shepherd CA, Hopkins AL, Navratilova I (2014) Fragment screening by SPR and advanced application to GPCRs. Prog Biophys Mol Biol 116:113–123. https://doi.org/10.1016/j.pbiomolbio.2014.09.008

    CAS  Article  PubMed  Google Scholar 

  71. Sinko W, Miao Y, de Oliveira CAF, McCammon JA (2013) Population based reweighting of scaled molecular dynamics. J Phys Chem B 117:12759–12768. https://doi.org/10.1021/jp401587e

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  72. Stanley N, Pardo L, De Fabritiis G (2016) The pathway of ligand entry from the membrane bilayer to a lipid G protein-coupled receptor. Sci Rep 6:22639. https://doi.org/10.1038/srep22639

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  73. Stone TW, Ceruti S, Abbracchio MP (2009) Adenosine receptors and neurological disease: neuroprotection and neurodegeneration. In: Wilson CN, Mustafa SJ (eds) Adenosine receptors in health and disease, vol 193. Springer, Berlin, pp 535–587. https://doi.org/10.1007/978-3-540-89615-9_17

    Google Scholar 

  74. Torrie GM, Valleau JP (1977) Nonphysical sampling distributions in Monte Carlo free-energy estimation: umbrella sampling. J Comput Phys 23:187–199. https://doi.org/10.1016/0021-9991(77)90121-8

    Article  Google Scholar 

  75. Vauquelin G, Bostoen S, Vanderheyden P, Seeman P (2012) Clozapine, atypical antipsychotics, and the benefits of fast-off D2 dopamine receptor antagonism. Naunyn Schmiedebergs Arch Pharmacol 385:337–372. https://doi.org/10.1007/s00210-012-0734-2

    CAS  Article  PubMed  Google Scholar 

  76. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25:1157–1174. https://doi.org/10.1002/jcc.20035

    CAS  Article  PubMed  Google Scholar 

  77. Wang K, Chodera JD, Yang Y, Shirts MR (2013) Identifying ligand binding sites and poses using GPU-accelerated Hamiltonian replica exchange molecular dynamics. J Comput Aided Mol Des 27:989–1007. https://doi.org/10.1007/s10822-013-9689-8

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  78. Wolf MG, Hoefling M, Aponte-Santamaría C, Grubmüller H, Groenhof G (2010) g_membed: efficient insertion of a membrane protein into an equilibrated lipid bilayer with minimal perturbation. J Comput Chem 31:2169–2174. https://doi.org/10.1002/jcc.21507

    CAS  Article  PubMed  Google Scholar 

  79. Xu F, Wu H, Katritch V, Han GW, Jacobson KA, Gao Z-G et al (2011) Structure of an agonist-bound human A2A adenosine receptor. Science 332:322–327. https://doi.org/10.1126/science.1202793

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  80. Yu R, Tabassum N, Jiang T (2016) Investigation of α-conotoxin unbinding using umbrella sampling. Bioorg Med Chem Lett 26:1296–1300. https://doi.org/10.1016/j.bmcl.2016.01.013

    CAS  Article  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Francesca Deflorian.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 565 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Deganutti, G., Zhukov, A., Deflorian, F. et al. Impact of protein–ligand solvation and desolvation on transition state thermodynamic properties of adenosine A2A ligand binding kinetics. In Silico Pharmacol. 5, 16 (2017). https://doi.org/10.1007/s40203-017-0037-x

Download citation

Keywords

  • Metadynamics
  • Supervised molecular dynamics
  • Ligand binding kinetics
  • SPR
  • Biacore
  • Molecular dynamics