Skip to main content
Log in

Antiquorum sensing activity of silver nanoparticles in P. aeruginosa: an in silico study

  • Original Research
  • Published:
In Silico Pharmacology Aims and scope Submit manuscript

Abstract

Pseudomonas aeruginosa an opportunistic pathogen regulates its virulence through Quorum sensing (QS) mechanism comprising of Las and Rhl system. Targeting of QS mechanism could be an ideal strategy to combat infection caused by P. aeruginosa. Silver nanoparticles (AgNPs) have been broadly applied as antimicrobial agents against a number of pathogenic bacterial and fungal strains, but have not been reported as an anti-QS agent. Therefore, the aim of present work was to show the computational analysis for the interaction of AgNPs with the QS system using an In silico approach. In silico studies showed that AgNPs got ‘locked’ deeply into the active site of respective proteins with their surrounding residues. The molecular docking analysis clearly demonstrated that AgNPs got bound to the catalytic cleft of LasI synthase (Asp73-Ag = 3.1 Å), RhlI synthase (His52-Ag = 2.8 Å), transcriptional receptor protein LasR (Leu159-Ag = 2.3 Å) and RhlR (Trp10-Ag = 3.1 Å and Glu34-Ag = 3.2 Å). The inhibition of LasI/RhlI synthase by AgNPs blocked the biosynthesis of AHLs, thus no AHL produced, no QS occurred. Further, interference with transcriptional regulatory proteins led to the inactivation of LasR/RhlR system that finally blocked the expression of QS-controlled virulence genes. Our findings clearly demonstrate the anti-QS property of AgNPs in P. aeruginosa which could be an alternative approach to the use of traditional antibiotics for the treatment of P. aeruginosa infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ali SG, Ansari MA, Khan HM, Jalal M, Mahdi AA, Cameotra SS (2017) Crataeva nurvala nanoparticles inhibit virulence factors and biofilm formation in clinical isolates of Pseudomonas aeruginosa. J Basic Microbiology 57:193–203

    Article  CAS  Google Scholar 

  • Alvarez MV, Moreira MR, Ponce A (2012) Antiquorum sensing and antimicrobial activity of natural agents with potential use in food. J Food Saf 32:379–387

    Article  CAS  Google Scholar 

  • Banik SK, Fenley AT, Kulkarni RV (2009) A model for signal transduction during quorum sensing in Vibrio harveyi. Phys Biol 6:046008

    Article  PubMed  Google Scholar 

  • Benkert P, Biasini M, Schwede T (2011) Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics 27:343–350

    Article  CAS  PubMed  Google Scholar 

  • Davies D (2003) Understanding biofilm resistance to antibacterial agents. Nat Rev Drug Discov 2:114–122

    Article  CAS  PubMed  Google Scholar 

  • Delden CV, Iglewski BH (1998) Cell-to-cell signaling and Pseudomonas aeruginosa infections. Emerg Infect Dis 4:551–560

    Article  PubMed  PubMed Central  Google Scholar 

  • Gnanendra TS, Geethu G, Arjunan S, Sharmila B, Hussain MIZ, Moorthy K, Jeyakumar N (2010) Theoretical models of quorum sensing dependent regulation of transcriptional activators of Pseudomonas aeruginosa. Inter J Biol Technol 1:43–49

    CAS  Google Scholar 

  • Guex N, Peitsch MC, Schwede T (2009) Automated comparative protein structure modeling with SWISS-MODEL and Swiss-PdbViewer: a historical perspective. Electrophoresis 30:S162–S173

    Article  PubMed  Google Scholar 

  • Hodgkinson JT, Galloway WRJD, Wright M, Mati IK, Nicholson RL, Welch M, Spring DR (2012) Design, synthesis and biological evaluation of non-natural modulators of quorum sensing in Pseudomonas aeruginosa. Org Biomol Chem 10:6032–6044

    Article  CAS  PubMed  Google Scholar 

  • Hollingsworth SA, Karplus PA (2010) A fresh look at the Ramachandran plot and the occurrence of standard structures in proteins. Biomol Concepts 1:271–283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Juan C, Zamorano L, Perez JL, Ge Y, Oliver A (2010) Activity of a new antipseudomonal cephalosporin, CXA-101 (FR264205), against carbapenem resistant and multidrugresistant Pseudomonas aeruginosa clinical strains. Antimicrob Agents Chemother 54:846–851

    Article  CAS  PubMed  Google Scholar 

  • Longo F, Rampioni G, Bondì R, Imperi F, Fimia GM, Visca P, Zennaro E, Leoni L (2013) A new transcriptional repressor of the Pseudomonas aeruginosa quorum sensing receptor gene lasR. PLoS ONE 8:e69554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lovell SC, Davis IW, Arendall WB III, de Bakker PIW, Word JM, Prisant MG, Richardson JS, Richard DC (2002) Structure validation by Calpha geometry: phi, psi and Cbeta deviation. Proteins Struct Funct Genet 50:437–450

    Article  Google Scholar 

  • Mühling M, Bradford A, Readman JW, Somerfield PJ, Handy RD (2009) An investigation into the effects of silver nanoparticles on antibiotic resistance of naturally occurring bacteria in an estuarine sediment. Mar Environ 68:278–283

    Article  Google Scholar 

  • Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73:1712–1720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palmer KL, Mashburn LM, Singh PK, Whiteley M (2005) Cystic fibrosis sputum supports growth and cues key aspects of Pseudomonas aeruginosa physiology. J Bacteriol 187:5267–5277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Passador L, Cook JM, Gambello MJ, Rust L, Iglewski BH (1993) Expression of Pseudomonas aeruginosa virulence genes requires cell-to-cell communication. Science 260:1127–1130

    Article  CAS  PubMed  Google Scholar 

  • Pearson JP, Pesci EC, Iglewski BH (1997) Roles of Pseudomonas aeruginosa las and rhl quorum-sensing systems in control of elastase and rhamnolipid biosynthesis genes. J Bacteriol 179:5756–5767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pesci EC, Milbank JB, Pearson JP, McKnight S, Kende AS, Greenberg EP, Iglewski BH (1999) Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa. Proc Natl Acad Sci 96:11229–11234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2011) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612

    Article  Google Scholar 

  • Reading NC, Sperandio V (2006) Quorum sensing: the many languages of bacteria. FEMS Microbiol Lett 254:1–11

    Article  CAS  PubMed  Google Scholar 

  • Sali A, Blundell TL (1993) Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234:779–815

    Article  CAS  PubMed  Google Scholar 

  • Schneidman-Duhovny D, Inbar Y, Nussinov R, Wolfson HJ (2005) PatchDock and SymmDock: servers for rigid and symmetric docking. Nucl Acids Res 33:W363–W367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh BR, Singh BN, Singh A, Khan W, Naqvi AH, Singh HB (2015) Mycofabricated biosilver nanoparticles interrupt Pseudomonas aeruginosa quorum sensing systems. Sci Rep 5:13719

    Article  PubMed  PubMed Central  Google Scholar 

  • Su HC, Ramkissoon K, Doolittle J, Clark M, Khatun J, Secrest A, Wolfgang MC, Giddings MC (2010) The development of ciprofloxacin resistance in Pseudomonas aeruginosa involves multiple response stages and multiple proteins. Antimicrob Agents Chemother 54:4626–4635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vyshnava SS, Kanderi DK, Panjala SP, Pandian K, Bontha RR, Goukanapalle PKR, Banaganapalli B (2016) Effect of silver nanoparticles against the formation of biofilm by Pseudomonas aeruginosa an in silico approach. Appl Biochem Biotechnol 180(3):426–437

    Article  CAS  PubMed  Google Scholar 

  • Wagner VE, Filiatrault MJ, Picardo KF, Iglewski BH (2008) Pseudomonas aeruginosa virulence and pathogenesis issues. In: Cornelis P (ed) Pseudomonas genomics and molecular biology, 1st edn. Caister Academic Press, Norfolk, pp 129–158

    Google Scholar 

  • Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of general amber force field. J Comput Chem 25:1157–1174

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Wang W, Kollman PA, Case DA (2006) Automatic atom type and bond type perception in molecular mechanical calculations. J Mol Graph Model 25:247–260

    Article  PubMed  Google Scholar 

  • Wass MN, Kelley LA, Sternberg MJ (2010) 3DLigandSite: predicting ligand-binding sites using similar structures. Nucl Acids Res 38:469–473

    Article  Google Scholar 

  • Weir E, Lawlor A, Whelan A, Regan F (2008) The use of nanoparticles in antimicrobial materials and their characterization. Analyst 133:835–845

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Mr. Syed Ghazanfar Ali is grateful to UGC, New Delhi, India for research assistance. Authors thank to Aligarh Muslim University, Aligarh, India and IRMC, University of Dammam, Saudi Arabia for providing instruments facilities and other items used in this study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Syed Ghazanfar Ali or Mohammad Azam Ansari.

Ethics declarations

Funding

None.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, S.G., Ansari, M.A., Sajid Jamal, Q.M. et al. Antiquorum sensing activity of silver nanoparticles in P. aeruginosa: an in silico study. In Silico Pharmacol. 5, 12 (2017). https://doi.org/10.1007/s40203-017-0031-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40203-017-0031-3

Keywords

Navigation