Skip to main content
Log in

The occurrence of SARS-CoV-2 in Tehran’s municipal wastewater: performance of treatment systems and feasibility of wastewater-based epidemiology

  • Research article
  • Published:
Journal of Environmental Health Science and Engineering Aims and scope Submit manuscript

Abstract

Analyzing municipal wastewater for the presence of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) helps to evaluate the efficacy of treatment systems in mitigating virus-related health risks. This research investigates wastewater treatment plants’ (WWTPs) performance in the reduction of SARS-CoV-2 from municipal wastewater in Tehran, Iran. SARS-CoV-2 RNA was measured within sewers, at the inlets, and after the primary and secondary treatment stages of three main WWTPs. Within sewers, the average virus titer stood at 58,600 gc/L, while at WWTP inlets, it measured 38,136 gc/L. A substantial 67% reduction in virus titer was observed at the inlets, accompanied by a 2-log reduction post-primary treatment. Remarkably, the biological treatment process resulted in complete virus elimination across all plants. Additionally, a notable positive correlation (r > 0.8) was observed between temperature and virus titer in wastewater. Using wastewater-based epidemiology (WBE) technique and the estimated SARS-CoV-2 RNA shedding rates, the infection prevalence among populations served by WWTPs found to be between 0.128% to 0.577%. In conclusion, this research not only advances our understanding of SARS-CoV-2 dynamics within wastewater treatment systems but also provides practical insights for enhancing treatment efficiency and implementing the feasibility of WBE strategies in Tehran. These implications contribute to the broader efforts to protect public health and mitigate the impact of future viral outbreaks.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data sets generated during the current study are available from the corresponding author upon request.

References

  1. La Rosa G, Bonadonna L, Lucentini L, Kenmoe S, Suffredini E. Coronavirus in water environments: occurrence, persistence and concentration methods-a scoping review. Water Res. 2020;179: 115899.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Foladori P, Cutrupi F, Segata N, Manara S, Pinto F, Malpei F, et al. SARS-CoV-2 from faeces to wastewater treatment: what do we know? a review. Sci Total Environ. 2020;743: 140444.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  3. Corpuz MVA, Buonerba A, Vigliotta G, Zarra T, Ballesteros F Jr, Campiglia P, et al. Viruses in wastewater: occurrence, abundance and detection methods. Sci Total Environ. 2020;745: 140910.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mandal P, Gupta AK, Dubey BK. A review on presence, survival, disinfection/removal methods of coronavirus in wastewater and progress of wastewater-based epidemiology. J Environ Chem Eng. 2020;8(5):104317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ahmed W, Angel N, Edson J, Bibby K, Bivins A, O’Brien JW, et al. First confirmed detection of SARS-CoV-2 in untreated wastewater in Australia: a proof of concept for the wastewater surveillance of COVID-19 in the community. Sci Total Environ. 2020;728:138764.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  6. La Rosa G, Iaconelli M, Mancini P, Bonanno Ferraro G, Veneri C, Bonadonna L, et al. First detection of SARS-CoV-2 in untreated wastewaters in Italy. Sci Total Environ. 2020;736:139652.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  7. Carducci A, Federigi I, Liu D, Thompson JR, Verani M. Making waves: coronavirus detection, presence and persistence in the water environment: state of the art and knowledge needs for public health. Water Res. 2020;179: 115907.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ahmed W, Tscharke B, Bertsch PM, Bibby K, Bivins A, Choi P, et al. SARS-CoV-2 RNA monitoring in wastewater as a potential early warning system for COVID-19 transmission in the community: a temporal case study. Sci Total Environ. 2021;761:144216.

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Medema G, Heijnen L, Elsinga G, Italiaander R, Brouwer A. Presence of SARS-coronavirus-2 RNA in sewage and correlation with reported COVID-19 prevalence in the early stage of the epidemic in the Netherlands. Environ Sci Pollut Res. 2020;7(7):511–6.

    CAS  Google Scholar 

  10. Gholipour S, Mohammadi F, Nikaeen M, Shamsizadeh Z, Khazeni A, Sahbaei Z, et al. COVID-19 infection risk from exposure to aerosols of wastewater treatment plants. Chemosphere. 2021;273: 129701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Qamsari EM, Mohammadi P. Evaluation of SARS-CoV-2 RNA presence in treated and untreated hospital sewage. Water Air Soil Pollut. 2023;234(4):273.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zaneti RN, Girardi V, Spilki FR, Mena K, Westphalen APC, da Costa Colares ER, et al. Quantitative microbial risk assessment of SARS-CoV-2 for workers in wastewater treatment plants. Sci Total Environ. 2021;754: 142163.

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Rimoldi SG, Stefani F, Gigantiello A, Polesello S, Comandatore F, Mileto D, et al. Presence and vitality of SARS-CoV-2 virus in wastewaters and rivers. MedRxiv. 2020:2020.05.01.20086009.

  14. Randazzo W, Truchado P, Cuevas-Ferrando E, Simón P, Allende A, Sánchez G. SARS-CoV-2 RNA in wastewater anticipated COVID-19 occurrence in a low prevalence area. Water Res. 2020;181: 115942.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang J, Feng H, Zhang S, Ni Z, Ni L, Chen Y, et al. SARS-CoV-2 RNA detection of hospital isolation wards hygiene monitoring during the coronavirus disease 2019 outbreak in a Chinese hospital. Int J Infect Dis. 2020;94:103–6.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kumar M, Patel AK, Shah AV, Raval J, Rajpara N, Joshi M, et al. First proof of the capability of wastewater surveillance for COVID-19 in India through detection of genetic material of SARS-CoV-2. Sci Total Environ. 2020;746: 141326.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. Peccia J, Zulli A, Brackney DE, Grubaugh ND, Kaplan EH, Casanovas-Massana A, et al. SARS-CoV-2 RNA concentrations in primary municipal sewage sludge as a leading indicator of COVID-19 outbreak dynamics. medRxiv. 2020;20105999. https://doi.org/10.1101/2020.05.19.20105999.

  18. Kocamemi BA, Kurt H, Sait A, Sarac F, Saatci AM, Pakdemirli B. SARS-CoV-2 detection in Istanbul wastewater treatment plant sludges. medRxiv. 2020;20099358. https://doi.org/10.1101/2020.05.12.20099358.

  19. Westhaus S, Weber F-A, Schiwy S, Linnemann V, Brinkmann M, Widera M, et al. Detection of SARS-CoV-2 in raw and treated wastewater in Germany–suitability for COVID-19 surveillance and potential transmission risks. Sci Total Environ. 2021;751: 141750.

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Arora S, Nag A, Sethi J, Rajvanshi J, Saxena S, Shrivastava SK, et al. Sewage surveillance for the presence of SARS-CoV-2 genome as a useful wastewater based epidemiology (WBE) tracking tool in India. Water Sci Technol. 2020;82(12):2823–36.

    Article  CAS  PubMed  Google Scholar 

  21. González-Reyes JR, Hernández-Flores MdlL, Paredes-Zarco JE, Téllez-Jurado A, Fayad-Meneses O, Carranza-Ramírez L. Detection of SARS-CoV-2 in Wastewater Northeast of Mexico City: Strategy for Monitoring and Prevalence of COVID-19. Int J Environ Res Public Health. 2021;18(16):8547.

    Article  PubMed  PubMed Central  Google Scholar 

  22. WHO. Guidelines for environmental surveillance of poliovirus circulation. In: Global Polio Eradication Initiative. 2015. https://polioeradication.org/wp-content/uploads/2016/07/GPLN_GuidelinesES_April2015.pdf.

    Google Scholar 

  23. Lu D, Huang Z, Luo J, Zhang X, Sha S. Primary concentration – The critical step in implementing the wastewater based epidemiology for the COVID-19 pandemic: A mini-review. Sci Total Environ. 2020;747:141245.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing; Vienna, Austria; 2021. URL https://www.R-project.org/. Accessed Oct 2023.

  25. Rose C, Parker A, Jefferson B, Cartmell E. The characterization of feces and urine: a review of the literature to inform advanced treatment technology. Crit Rev Environ Sci Technol. 2015;45(17):1827–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wölfel R, Corman VM, Guggemos W, Seilmaier M, Zange S, Müller MA, et al. Virological assessment of hospitalized patients with COVID-2019. Nature. 2020;581(7809):465–9.

    Article  ADS  PubMed  Google Scholar 

  27. Barceló D. Wastewater-based epidemiology to monitor COVID-19 outbreak: present and future diagnostic methods to be in your radar. CSCEE. 2020;2:100042.

    Google Scholar 

  28. Steven Percival MVY, Williams DW, Chalmers RM, Gray NF. Free and combined chlorine. In: Microbiology of waterborne diseases : microbiological aspects and risks. second ed. London: Academic Press: Amsterdam ; Boston : Elsevier/Academic Press; 2014. pp. 571–90.

  29. Deborde M, von Gunten U. Reactions of chlorine with inorganic and organic compounds during water treatment—Kinetics and mechanisms: a critical review. Water Res. 2008;42(1):13–51.

    Article  CAS  PubMed  Google Scholar 

  30. Gundy PM, Gerba CP, Pepper IL. Survival of coronaviruses in water and wastewater. Food Environ Virol. 2009;1(1):10–4.

    Article  Google Scholar 

  31. watertechnologies.com. Chapter 27 - Chlorine And Chlorine Alternatives. In: Handbook of industrial water treatment. SUEZ Water Technologies; 2021. https://www.watertechnologies.com/handbook/chapter-27-chlorine-and-chlorine-alternatives.

    Google Scholar 

  32. Serra-Compte A, González S, Arnaldos M, Berlendis S, Courtois S, Loret JF, et al. Elimination of SARS-CoV-2 along wastewater and sludge treatment processes. Water Res. 2021;202: 117435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Abu Ali H, Yaniv K, Bar-Zeev E, Chaudhury S, Shagan M, Lakkakula S, et al. Tracking SARS-CoV-2 RNA through the wastewater treatment process. ACS ES&T Water. 2021;1(5):1161–7.

    Article  CAS  Google Scholar 

  34. Brisebois E, Veillette M, Dion-Dupont V, Lavoie J, Corbeil J, Culley A, et al. Human viral pathogens are pervasive in wastewater treatment center aerosols. Res J Environ Sci. 2018;67:45–53.

    CAS  Google Scholar 

  35. Wigginton KR, Pecson BM, Sigstam T, Bosshard F, Kohn T. Virus inactivation mechanisms: impact of disinfectants on virus function and structural integrity. Environ Sci Technol. 2012;46(21):12069–78.

    Article  ADS  CAS  PubMed  Google Scholar 

  36. Randazzo W, Truchado P, Cuevas-Ferrando E, Simón P, Allende A, Sánchez G. SARS-CoV-2 RNA in wastewater anticipated COVID-19 occurrence in a low prevalence area. Water Res. 2020;181: 115942.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sherchan SP, Shahin S, Ward LM, Tandukar S, Aw TG, Schmitz B, et al. First detection of SARS-CoV-2 RNA in wastewater in North America: a study in Louisiana, USA. Sci Total Environ. 2020;743: 140621.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  38. Haramoto E, Malla B, Thakali O, Kitajima M. First environmental surveillance for the presence of SARS-CoV-2 RNA in wastewater and river water in Japan. Sci Total Environ. 2020;737: 140405.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nasseri S, Yavarian J, Baghani AN, Azad TM, Nejati A, Nabizadeh R, et al. The presence of SARS-CoV-2 in raw and treated wastewater in 3 cities of Iran: Tehran, Qom and Anzali during coronavirus disease 2019 (COVID-19) outbreak. J Environ Health Sci Eng. 2021;19:573–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Westhaus S, Weber F-A, Schiwy S, Linnemann V, Brinkmann M, Widera M, et al. Detection of SARS-CoV-2 in raw and treated wastewater in Germany–suitability for COVID-19 surveillance and potential transmission risks. Sci Total Environ. 2021;751: 141750.

    Article  ADS  CAS  PubMed  Google Scholar 

  41. Hasan SW, Ibrahim Y, Daou M, Kannout H, Jan N, Lopes A, et al. Detection and quantification of SARS-CoV-2 RNA in wastewater and treated effluents: Surveillance of COVID-19 epidemic in the United Arab Emirates. Sci Total Environ. 2021;764: 142929.

    Article  ADS  CAS  PubMed  Google Scholar 

  42. Pasalari H, Ataei-Pirkooh A, Gholami M, Azhar IR, Yan C, Kachooei A, et al. Is SARS-CoV-2 a concern in the largest wastewater treatment plant in middle east? Heliyon. 2023;9(6):e16607.

  43. Rimoldi SG, Stefani F, Gigantiello A, Polesello S, Comandatore F, Mileto D, et al. Presence and infectivity of SARS-CoV-2 virus in wastewaters and rivers. Sci Total Environ. 2020;744: 140911.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang J, Shen J, Ye D, Yan X, Zhang Y, Yang W, et al. Disinfection technology of hospital wastes and wastewater: Suggestions for disinfection strategy during coronavirus Disease 2019 (COVID-19) pandemic in China. Environ Pollut. 2020;262: 114665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Alahdal HM, Ameen F, AlYahya S, Sonbol H, Khan A, Alsofayan Y, et al. Municipal wastewater viral pollution in Saudi Arabia: effect of hot climate on COVID-19 disease spreading. Environ Sci Pollut Res. 2023;30(10):25050–7.

    Article  CAS  Google Scholar 

  46. Dutta H, Kaushik G, Dutta V. Wastewater-based epidemiology: a new frontier for tracking environmental persistence and community transmission of COVID-19. Environ Sci Pollut Res. 2022;29(57):85688–99.

    Article  CAS  Google Scholar 

  47. Yaniv K, Shagan M, Lewis YE, Kramarsky-Winter E, Weil M, Indenbaum V, et al. City-level SARS-CoV-2 sewage surveillance. Chemosphere. 2021;283: 131194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Funding for this study (Grant No.: 48954–110-2–99) was provided by the Office of R&D and Industrial Relations of Water and Wastewater Engineering Company, Tehran, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahdi Hadi.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests or any personal relationships that could have appeared to influence the content of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hadi, M., Kheiri, R., Baghban, M. et al. The occurrence of SARS-CoV-2 in Tehran’s municipal wastewater: performance of treatment systems and feasibility of wastewater-based epidemiology. J Environ Health Sci Engineer (2024). https://doi.org/10.1007/s40201-024-00897-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40201-024-00897-y

Keywords

Navigation