Skip to main content
Log in

Exposure to environmental pollutants: A mini-review on the application of wastewater-based epidemiology approach

  • Review article
  • Published:
Journal of Environmental Health Science and Engineering Aims and scope Submit manuscript

Abstract

Wastewater-based epidemiology (WBE) is considered an innovative and promising tool for estimating community exposure to a wide range of chemical and biological compounds by analyzing wastewater. Despite scholars' interest in WBE studies, there are uncertainties and limitations associated with this approach. This current review focuses on the feasibility of the WBE approach in assessing environmental pollutants, including pesticides, heavy metals, phthalates, bisphenols, and personal care products (PCPs). Limitations and challenges of WBE studies are initially discussed, and then future perspectives, gaps, and recommendations are presented in this review. One of the key limitations of this approach is the selection and identification of appropriate biomarkers in studies. Selecting biomarkers considering the basic requirements of a human exposure biomarker is the most important criterion for validating this new approach. Assessing the stability of biomarkers in wastewater is crucial for reliable comparisons of substance consumption in the population. However, directly analyzing wastewater does not provide a clear picture of biomarker stability. This uncertainty affects the reliability of temporal and spatial comparisons. Various uncertainties also arise from different steps involved in WBE. These uncertainties include sewage sampling, exogenous sources, analytical measurements, back-calculation, and estimation of the population under investigation. Further research is necessary to ensure that measured pollutant levels accurately reflect human excretion. Utilizing data from WBE can support healthcare policy in assessing exposure to environmental pollutants in the general population. Moreover, WBE seems to be a valuable tool for biomarkers that indicate healthy conditions, lifestyle, disease identification, and exposure to pollutants. Although this approach has the potential to serve as a biomonitoring tool in large communities, it is necessary to monitor more metabolites from wastewater to enhance future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Aghaei M, Yunesian M, Janjani H, Dehghani MH. Chapter 1 - wastewater-based epidemiology: evidence mapping toward identifying emerging areas of research. In: Hadi Dehghani M, Karri RR, Rousis N, Gracia-Lor E, editors. Wastewater-Based Epidemiology For The Assessment Of Human Exposure To Environmental Pollutants. Academic Press; 2023.

    Google Scholar 

  2. Alengebawy A, Abdelkhalek ST, Qureshi SR, Wang M-Q. Heavy metals and pesticides toxicity in agricultural soil and plants: ecological risks and human health implications. Toxics. 2021;9:42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Anjum MM, Ali N, Iqbal S. Pesticides and environmental health: a review. Toxicol Environ Chem. 2017;5:555671.

    Google Scholar 

  4. Been F, Bastiaensen M, Lai FY, Libousi K, Thomaidis NS, Benaglia L, Esseiva P, Delemont O, Van Nuijs AL, Covaci A. Mining the chemical information on urban wastewater: monitoring human exposure to phosphorus flame retardants and plasticizers. Environ Sci Technol. 2018;52:6996–7005.

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Been F, Bastiaensen M, Lai FY, Van Nuijs AL, Covaci A. Liquid chromatography-tandem mass spectrometry analysis of biomarkers of exposure to phosphorus flame retardants in wastewater to monitor community-wide exposure. Anal Chem. 2017;89:10045–53.

    Article  CAS  PubMed  Google Scholar 

  6. Campos-Manas M, Fabregat-Safont D, Hernández F, De Rijke E, De Voogt P, Van Wezel A, Bijlsma L. Analytical research of pesticide biomarkers in wastewater with application to study spatial differences in human exposure. Chemosphere. 2022;307:135684.

    Article  CAS  PubMed  Google Scholar 

  7. Chen W, Li Y, Chen C-E, Sweetman AJ, Zhang H, Jones KC. Dgt passive sampling for quantitative in situ measurements of compounds from household and personal care products in waters. Environ Sci Technol. 2017;51:13274–81.

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Choi J, Aarøe Mørck T, Polcher A, Knudsen LE, Joas A. Review of the state of the art of human biomonitoring for chemical substances and its application to human exposure assessment for food safety. Efsa Supporting Publications. 2015;12:724e.

    Article  Google Scholar 

  9. Choi PM, O’brien JW, Tscharke BJ, Mueller JF, Thomas KV, Samanipour S. Population socioeconomics predicted using wastewater. Environ SciTechnol Lett. 2020;7:567–72.

    Article  CAS  Google Scholar 

  10. Choi PM, Tscharke B, Samanipour S, Hall WD, Gartner CE, Mueller JF, Thomas KV, O’brien JW. Social, demographic, and economic correlates of food and chemical consumption measured by wastewater-based epidemiology. Proc Natl Acad Sci. 2019;116(21864):21873.

    ADS  Google Scholar 

  11. Daughton C. Illicit drugs in municipal sewage: proposed new nonintrusive tool to 381 heighten public awareness of societal use of illicit-abused drugs and their potential for 382 ecological consequences. Pharmaceut Care Prod Environ: Scientific. 2001;383:348–64.

    Article  Google Scholar 

  12. Devault DA, Karolak S. Wastewater-based epidemiology approach to assess population exposure to pesticides: a review of a pesticide pharmacokinetic dataset. Enviro Sci Pollut Res. 2020;27:4695–702.

    Article  CAS  Google Scholar 

  13. Devault DA, Karolak S, Lévi Y, Rousis NI, Zuccato E, Castiglioni S. Exposure of an urban population to pesticides assessed by wastewater-based epidemiology in a Caribbean Island. Sci Total Environ. 2018;644:129–36.

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Du P, Thai PK, Bai Y, Zhou Z, Xu Z, Zhang X, Wang J, Zhang C, Hao F, Li X. Monitoring consumption of methadone and heroin in major chinese cities by wastewater-based epidemiology. Drug Alcohol Dependence. 2019;205:107532.

    Article  CAS  PubMed  Google Scholar 

  15. Du P, Zhang L, Ma Y, Li X, Wang Z, Mao K, Wang N, Li Y, He J, Zhang X. Occurrence and fate of heavy metals in municipal wastewater in Heilongjiang Province, China: a monthly reconnaissance from 2015 to 2017. Water. 2020;12:728.

    Article  CAS  Google Scholar 

  16. Encarnação T, Pais AA, Campos MG, Burrows HD. Endocrine disrupting chemicals: impact on human health, wildlife and the environment. Sci Prog. 2019;102:3–42.

    Article  PubMed  PubMed Central  Google Scholar 

  17. González-Mariño I, Ares L, Montes R, Rodil R, Cela R, López-García E, Postigo C, De Alda ML, Pocurull E, Marcé RM. Assessing population exposure to phthalate plasticizers in thirteen spanish cities through the analysis of wastewater. J Hazard Mater. 2021;401:123272.

    Article  PubMed  Google Scholar 

  18. González-Mariño I, Rodil R, Barrio I, Cela R, Quintana JB. Wastewater-based epidemiology as a new tool for estimating population exposure to phthalate plasticizers. Environ Sci Technol. 2017;51:3902–10.

    Article  ADS  PubMed  Google Scholar 

  19. Hassaan MA, El Nemr A. Pesticides pollution: Classifications, human health impact, extraction and treatment techniques. Egypt J Aquat Res. 2020;46(3):207–20.

    Article  Google Scholar 

  20. Hasanvand M, Mohammadi R, Khoshnamvand N, Jafari A, Palangi HS, Mokhayeri Y. Dose-response meta-analysis of arsenic exposure in drinking water and intelligence quotient. J Environ Health Sci Eng. 2020;18:1691–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hiller J, Klotz K, Meyer S, Uter W, Hof K, Greiner A, Göen T, Drexler H. Systemic availability of lipophilic organic uv filters through dermal sunscreen exposure. Environ Int. 2019;132:105068.

    Article  CAS  PubMed  Google Scholar 

  22. Hvitved-Jacobsen T, Vollertsen J, Nielsen AH. Sewer Processes: Microbial And Chemical Process Engineering Of Sewer Networks. Crc Press; 2001.

    Book  Google Scholar 

  23. Jeon H-K, Sarma SN, Kim Y-J, Ryu J-C. Toxicokinetics and metabolisms of benzophenone-type uv filters in rats. Toxicology. 2008;248:89–95.

    Article  CAS  PubMed  Google Scholar 

  24. Johns LE, Cooper GS, Galizia A, Meeker JD. Exposure assessment issues in epidemiology studies of phthalates. Environ Int. 2015;85:27–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Juberg DR, Bus J, Katz DS. The Opportunities And Limitations Of Biomonitoring. Mackinac Center For Public Policy; 2008.

    Google Scholar 

  26. Kamikyouden N, Sugihara K, Watanabe Y, Uramaru N, Murahashi T, Kuroyanagi M, Sanoh S, Ohta S, Kitamura S. 2, 5-Dihydroxy-4-methoxybenzophenone: a novel major in vitro metabolite of Benzophenone-3 formed by rat and human liver microsomes. Xenobiotica. 2013;43:514–9.

    Article  CAS  PubMed  Google Scholar 

  27. Khoshnamvand N, Azizi N, Hassanvand MS, Shamsipour M, Naddafi K, Oskoei V. Blood lead level monitoring related to environmental exposure in the general Iranian population: A systematic review and meta-analysis. Environ Sci Pollut Res. 2021;28(25):32210–23.

    Article  CAS  Google Scholar 

  28. Klein S, Worch E, Knepper TP. Occurrence and spatial distribution of microplastics in river shore sediments of the Rhine-Main area in Germany. Environ Sci Technol. 2015;49:6070–6.

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Koch HM, Calafat AM. Human body burdens of chemicals used in plastic manufacture. Phil Trans Royal Soc B. 2009;364:2063–78.

    Article  CAS  Google Scholar 

  30. Li J, Gao J, Thai PK, Sun X, Mueller JF, Yuan Z, Jiang G. Stability of illicit drugs as biomarkers in sewers: from lab to reality. Environ Sci Technol. 2018;52:1561–70.

    Article  ADS  CAS  PubMed  Google Scholar 

  31. Lopardo L, Petrie B, Proctor K, Youdan J, Barden R, Kasprzyk-Hordern B. Estimation of community-wide exposure to bisphenol a via water fingerprinting. Environ Int. 2019;125:1–8.

    Article  CAS  PubMed  Google Scholar 

  32. Lorenzo M, Picó Y. Wastewater-based epidemiology: current status and future prospects. Curr Opinion Environ Sci Health. 2019;9:77–84.

    Article  Google Scholar 

  33. Markosian C, Mirzoyan N. Wastewater-based epidemiology as a novel assessment approach for population-level metal exposure. Sci Total Environ. 2019;689:1125–32.

    Article  ADS  CAS  PubMed  Google Scholar 

  34. Mccall A-K, Scheidegger A, Madry MM, Steuer AE, Weissbrodt DG, Vanrolleghem PA, Kraemer T, Morgenroth E, Ort C. Influence of different sewer biofilms on transformation rates of drugs. Environ Sci Technol. 2016;50:13351–60.

    Article  ADS  CAS  PubMed  Google Scholar 

  35. Mercan S, Kuloglu M, Asicioglu F. Monitoring of illicit drug consumption via wastewater: development, challenges, and future aspects. Curr Opinion Environ SciHealth. 2019;9:64–72.

    Article  Google Scholar 

  36. Omalley E, Obrien JW, Tscharke B, Thomas KV, Mueller JF. Per capita loads of organic uv filters in australian wastewater influent. Sci Total Environ. 2019;662:134–40.

    Article  ADS  CAS  PubMed  Google Scholar 

  37. Okereke CS, Kadry AM, Abdel-Rahman MS, Davis RA, Friedman MA. Metabolism of Benzophenone-3 in rats. Drug Metabolism And Disposition. 1993;21:788–91.

    CAS  PubMed  Google Scholar 

  38. Ort C, Bijlsma L, Castiglioni S, Covaci A, De Voogt P, Emke E, Hernández F, Reid M, Van Nuijs AL, Thomas KV. Wastewater Analysis For Community-Wide Drugs Use Assessment. New Psychoactive Substances: Springer; 2018.

    Book  Google Scholar 

  39. Paulsen L. The health risks of chemicals in personal care products and their fate in the environment. Chemistry Honors Papers. 2015;15. http://digitalcommons.conncoll.edu/chemhp/15.

  40. Pironti C, Ricciardi M, Proto A, Bianco PM, Montano L, Motta O. Endocrine-disrupting compounds: an overview on their occurrence in the aquatic environment and human exposure. Water. 2021;13:1347.

    Article  CAS  Google Scholar 

  41. Rahman A, Sarkar A, Yadav OP, Achari G, Slobodnik J. Potential human health risks due to environmental exposure to microplastics and knowledge gaps: A Scoping Review. Sci Total Environ. 2020;757:143872.

    Article  ADS  PubMed  Google Scholar 

  42. Ramin P, Brock AL, Causanilles A, Valverde-Pérez B, Emke E, De Voogt P, Polesel F, Plosz BG. Transformation and sorption of illicit drug biomarkers in sewer biofilms. Environ Sci Technol. 2017;51:10572–84.

    Article  ADS  CAS  PubMed  Google Scholar 

  43. Ramos MG, Heffernan A, Toms L, Calafat A, Ye X, Hobson P, Broomhall S, Mueller J. Concentrations of phthalates and dinch metabolites in pooled urine from Queensland, Australia. Environ Int. 2016;88:179–86.

    Article  PubMed Central  Google Scholar 

  44. Rousis NI, Gracia-Lor E, Reid MJ, Baz-Lomba JA, Ryu Y, Zuccato E, Thomas KV, Castiglioni S. Assessment of human exposure to selected pesticides in Norway by wastewater analysis. Sci Total Environ. 2020;723:138132.

    Article  ADS  CAS  PubMed  Google Scholar 

  45. Rousis NI, Gracia-Lor E, Zuccato E, Bade R, Baz-Lomba JA, Castrignanò E, Causanilles A, Covaci A, De Voogt P, Hernàndez F. Wastewater-based epidemiology to assess pan-european pesticide exposure. Water Res. 2017;121:270–9.

    Article  CAS  PubMed  Google Scholar 

  46. Rousis NI, Zuccato E, Castiglioni S. Monitoring population exposure to pesticides based on liquid chromatography-tandem mass spectrometry measurement of their urinary metabolites in urban wastewater: a novel biomonitoring approach. Sci Total Environ. 2016;571:1349–57.

    Article  ADS  CAS  PubMed  Google Scholar 

  47. Rousis NI, Zuccato E, Castiglioni S. Wastewater-based epidemiology to assess human exposure to pyrethroid pesticides. Environ Int. 2017;99:213–20.

    Article  CAS  PubMed  Google Scholar 

  48. Senta I, Rodriguez-Mozaz S, Corominas L, Petrovic M. Wastewater-based epidemiology to assess human exposure to personal care and household products–a review of biomarkers, analytical methods, and applications. Trends Environ Anal Chemistry. 2020;28:E00103.

    Article  CAS  Google Scholar 

  49. Spellman FR. Fundamentals Of Wastewater-Based Epidemiology: Biomonitoring Of Bacteria, Protozoa, Covid-19. And Other Viruses: Crc Press; 2021.

    Book  Google Scholar 

  50. Tang S, He C, Thai P, Vijayasarathy S, Mackie R, Toms L-ML, Thompson K, Hobson P, Tscharke B, O’brien JW. Concentrations of phthalate metabolites in australian urine samples and their contribution to the per capita loads in wastewater. Environ Int. 2020;137:105534.

    Article  CAS  PubMed  Google Scholar 

  51. Völkel W, Colnot T, Csanády GA, Filser JG, Dekant W. Metabolism and kinetics of bisphenol a in humans at low doses following Oral administration. Chem Res Toxicol. 2002;15:1281–7.

    Article  PubMed  Google Scholar 

  52. Zhu Y, Oishi W, Maruo C, Saito M, Chen R, Kitajima M, Sano D. Early warning of covid-19 via wastewater-based epidemiology: Potential and bottlenecks. SciTotal Environ. 2021;767:145124.

    CAS  Google Scholar 

Download references

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

M.A: Conceptualization, searching, drafting the manuscript, N.K. H. J.: searching, drafting the manuscript, M.H.D. R.R.K.: Conceptualization and design of study, Supervision, review & editing.

Corresponding author

Correspondence to Mohammad Hadi Dehghani.

Ethics declarations

Competing interests

The authors of this review declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Wastewater-based epidemiology (WBE) has been developed as an innovative approach to estimate exposure to environmental pollutants.

• WBE approach overcomes some limitations of human biomonitoring (HBM), i.e., high cost, sampling bias, ethical issues, etc.

• The most important challenges are the biomarker detectability and stability in wastewater.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aghaei, M.,  Khoshnamvand, N., Janjani, H. et al. Exposure to environmental pollutants: A mini-review on the application of wastewater-based epidemiology approach. J Environ Health Sci Engineer (2024). https://doi.org/10.1007/s40201-024-00895-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40201-024-00895-0

Keywords

Navigation