Skip to main content

Advertisement

Log in

Physicochemical methods for disinfection of contaminated surfaces – a way to control infectious diseases

  • Review article
  • Published:
Journal of Environmental Health Science and Engineering Aims and scope Submit manuscript

Abstract

This paper represents the reviews of recent advancements in different physicochemical methods for disinfecting contaminated surfaces, which are considered to be responsible for transmitting different bacterial, viral, and fungal infectious diseases. Surface disinfection can be achieved by applying chemicals, UV-based processes, ionization radiation (gamma-ray, X-ray and electron beam), application of self-disinfecting surfaces, no-touch room disinfection methods, and robotic disinfection methods for built-in settings. Application of different chemicals, such as alcohols, hydrogen peroxide, peracetic acid, quaternary ammonium salts, phenol, and iodine solution, are common and economical. However, the process is time-consuming and less efficient. The use of UVC light (wavelength: 200–280 nm, generated by low vapor mercury lamps or pulse xenon light) has gained much attention for disinfecting fomites worldwide. In recent times, the combination of UV and H2O2, based on the principle of the advanced oxidation process, has been applied for disinfecting inanimate surfaces. The process is very efficient and faster than chemical and UV processes. Heavy metals like copper, silver, zinc, and other metals can inactivate microbes and are used for surface modification to produce self-disinfecting surfaces and used in healthcare facilities. In combination with UVB (280–315 nm) and UVA (315–400 nm), titanium oxide has been utilized for disinfecting contaminated surfaces. Ionization radiation, one of the advanced methods, can be used in disinfecting medical devices and drugs. Post-COVID-19 pandemic, the no-touch and robotic disinfection methods utilizing chemicals or UVC lights have received much importance in built-in settings. Among these methods, surface disinfection by applying chemicals by fogging/vaporization and UV radiation methods has been widely reported in the literature compared to other methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

No published data and materials, including Figures and Tables, have been copied into the manuscript.

References

  1. She RC, Chen D, Pak P, Armani DK, Schubert A, Armani AM. Build-at-home UV-C disinfection system for healthcare settings. arXiv [Internet]. 2020;2–8. Available from: http://arxiv.org/abs/2003.12916.

  2. Maki DG, Alvarado CJ, Hassemer CA, Zilz MA. Relation of theinanimate hospital environment to endemic nosocomial infection. N Engl J Med. 1982;307:1562–6.

    Article  CAS  PubMed  Google Scholar 

  3. Otter JA, Yezli S, French GL. The role played by contaminated surfaces in the transmission of nosocomial pathogens. Infect Control Hosp Epidemiol. 2011;32:687–99.

    Article  PubMed  Google Scholar 

  4. Mitchell BG, Dancer SJ, Anderson M, Dehn E. Risk of organism acquisition from prior room occupants: A systematic review and meta-analysis. J Hosp Infect [Internet]. Elsevier Ltd; 2015;91:211–7. https://doi.org/10.1016/j.jhin.2015.08.005.

  5. Guridi A, Sevillano E, Fuente I, de la, Mateo E, Eraso E, Quindós G. Disinfectant activity of a portable ultraviolet c equipment. Int J Environ Res Public Health. 2019;16.

  6. Haque M, Sartelli M, McKimm J, Bakar MA. Health care-associated infections – an overview. Infect Drug Resist. 2018;11:2321–33.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Mark AS, Kevin CP. Australian Papetnt - Systems which determine operating parameters and disinfection schedules for germicidal devices and germicidal lamp apparatuses including lens systems. 2017.

  8. Messina G, Burgassi S, Messina D, Montagnani V, Cevenini G. A new UV-LED device for automatic disinfection of stethoscope membranes. Am J Infect Control [Internet]. Elsevier Inc; 2015;43:e61–6. https://doi.org/10.1016/j.ajic.2015.06.019.

  9. Barolia SK, Saini BK. Microbial contamination on different paper currency in Jhunjhunu, Rajasthan, India: a review. Int J Res Anal Rev. 2018;5:786–95.

    Google Scholar 

  10. Pedrós-Garrido S, Condón-Abanto S, Clemente I, Beltrán JA, Lyng JG, Bolton D et al. Efficacy of ultraviolet light (UV-C) and pulsed light (PL) for the microbiological decontamination of raw salmon (Salmo salar) and food contact surface materials. Innov Food Sci Emerg Technol [Internet]. Elsevier Ltd; 2018;50:124–31. https://doi.org/10.1016/j.ifset.2018.10.001.

  11. Gottselig SM, Dunn-Horrocks SL, Woodring KS, Coufal CD, Duong T. Advanced oxidation process sanitization of eggshell surfaces. Poult Sci. 2016;95:1356–62.

    Article  CAS  PubMed  Google Scholar 

  12. Adhikari A, Syamaladevi RM, Killinger K, Sablani SS. Ultraviolet-C light inactivation of Escherichia coli O157: H7 and Listeria monocytogenes on organic fruit surfaces. Int J Food Microbiol [Internet]. Elsevier B.V.; 2015;210:136–42. https://doi.org/10.1016/j.ijfoodmicro.2015.06.018.

  13. Mukhopadhyay S, Ukuku DO, Juneja V, Fan X. Effects of UV-C treatment on inactivation of Salmonella enterica and Escherichia coli O157: H7 on grape tomato surface and stem scars, microbial loads, and quality. Food Control [Internet]. Elsevier Ltd; 2014;44:110–7. https://doi.org/10.1016/j.foodcont.2014.03.027.

  14. Woodring KS. Quality and sensory attributes of Shell Eggs Sanitized with a combination of Hydrogen Peroxide and Ultraviolet Light. Texas A&M University; 2011.

  15. Li LM, Wong T, Rose E, Wickham G, Bryce E. Evaluation of an ultraviolet C light–emitting device for disinfection of electronic devices. Am J Infect Control [Internet]. Elsevier Inc.; 2016;44:1554–7. https://doi.org/10.1016/j.ajic.2016.07.028.

  16. Manning M, Lou, Davis J, Sparnon E, Ballard RM. iPads, droids, and bugs: Infection prevention for mobile handheld devices at the point of care. Am J Infect Control [Internet]. Elsevier Inc; 2013;41:1073–6. https://doi.org/10.1016/j.ajic.2013.03.304.

  17. Akinyemi KO, Atapu AD, Adetona OO, Coker AO. The potential role of mobile phones in the spread of bacterial infections. J Infect Dev Ctries. 2009;3:628–32.

    Article  PubMed  Google Scholar 

  18. Yerby E. United Sates Patent - Apparatus and method for sanitizing article. 2018.

  19. Jeremy S, Jason Y, John W, Pat H, Thomas T. International Patent - System for Disinfecting Larger Scale Space and Equipment. 2017.

  20. Fleycher RG, Salem O. Unites States Patent - Disinfection Device. 2015.

  21. Taylor TL, Hilt P. Unites States Patent - Station for Disinfecting Publicly-used Equipment. 2010.

  22. Woytkiw JV, Gardens BP. Unites States Patent - Apparatus and method for sanitization of potable devices. 2008.

  23. Jones WS, King TR, Jones CL. Unites States Patent - System and method for cleaning or sanitizing items intended for re-use. 2007.

  24. Saccucci M, Bruni E, Uccelletti D, Bregnocchi A, Sarto MS, Bossu M, et al. Surface disinfections: Present and future. J Nanomater. 2018;2018:1–9.

    Article  Google Scholar 

  25. Gebel J, Exner M, French G, Chartier Y, Christiansen B, Gemein S, et al. The role of surface disinfection in infection prevention. GMS Hyg Infect Control. 2013;8:Doc10.

    PubMed Central  PubMed  Google Scholar 

  26. Rutala WA, Weber DJ. Surface disinfection: should we do it? J Hosp Infect. 2001;48:64–8.

    Article  Google Scholar 

  27. Chemaly RF, Ghantoji SS, Simmons S, Dale C, Rodriguez M, Gubb J, et al. The role of the healthcare environment in the spread of multidrug-resistant organisms: update on current best practices for containment. Ther Adv Infect Dis. 2014;2:79–90.

    PubMed Central  PubMed  Google Scholar 

  28. Alimohammadi M, Abolli S, Ghordouei Milan E. Perceiving effect of environmental factors on prevalence of SARS-Cov-2 virus and using health strategies: a review. J Adv Environ Heal Res. 2022;10:187–96.

    Article  Google Scholar 

  29. Lei H, Li Y, Xiao S, Yang X, Lin C, Norris SL et al. Logistic growth of a surface contamination network and its role in disease spread. Sci Rep [Internet]. Springer US; 2017;7:1–10. https://doi.org/10.1038/s41598-017-13840-z.

  30. Abubakar I, Gautret P, Brunette GW, Blumberg L, Johnson D, Poumerol G, et al. Global perspectives for prevention of infectious diseases associated with mass gatherings. Lancet Infect Dis. 2012;12:66–74.

    Article  PubMed  Google Scholar 

  31. Cole L, Kramer PR. Bacteria, virus, fungi, and infectious diseases. Hum Physiol Biochem Basic Med. 2016. p. 193–6.

  32. Young KD. Bacterial morphology: why have different shapes? Curr Opin Microbiol. 2007;10:596–600.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Jain A, Jain S, Rawat S. Emerging fungal infections among children: a review on its clinical manifestations, diagnosis, and prevention. J Pharm Bioallied Sci. 2010;2:314–20.

    Article  PubMed Central  PubMed  Google Scholar 

  34. World Health Organization. Pandemic Influenza Risk Management WHO Interim Guidance [Internet]. WHO. 2013. Available from: https://www.who.int/publications/i/item/pandemic-influenza-risk-management

  35. WHO. Summary of probable SARS cases with onset of illness from 1 November 2002 to 31 July 2003. 2015.

  36. CDC. First Global Estimates of 2009 H1N1 Pandemic Mortality Released by CDC-Led Collaboration. 2012.

  37. ECDPC. Geographical distribution of confirmed MERS-CoV cases by country of infection and year. 2021.

  38. CDC. 2014–2016 Ebola Outbreak in West Africa. 2021.

  39. Outbreak W. 2015–16 Zika Virus Epidemic. 2021.

  40. JHU. COVID-19 Dashboard by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU). 2021.

  41. Han H, Bo W, JiaoJiao J, YueQian S. Summary of global surveillance data of infectious diseases in March 2022. Dis Surveill. 2022;37:424–6.

    Google Scholar 

  42. Bloom DE, Black S, Rappuoli R. Emerging infectious diseases: a proactive approach. Proc Natl Acad Sci U S A. 2017;114:4055–9.

    Article  CAS  PubMed Central  ADS  PubMed  Google Scholar 

  43. Burns A, van der Mensbrugghe D, Timmer H. Evaluating the economic consequences of avian influenza [Internet]. world bank. 2006. Available from: http://documents.worldbank.org/curated/en/977141468158986545/Evaluating-the-economic-consequences-of-avian-influenza

  44. Qureshi AI. Economic Impact of Zika Virus. Zika Virus Dis. 2018. p. 137–42.

  45. Verikios G. The dynamic effects of infectious disease outbreaks: The case of pandemic influenza and human coronavirus. Socioecon Plann Sci [Internet]. Elsevier Ltd; 2020;71:100898. https://doi.org/10.1016/j.seps.2020.100898.

  46. Bai L, Wei Y, Wei G, Li X, Zhang S. Infectious disease pandemic and permanent volatility of international stock markets: A long-term perspective. Financ Res Lett [Internet]. Elsevier; 2020;101709. https://doi.org/10.1016/j.frl.2020.101709.

  47. Meena M, Swapnil P, Barupal T, Sharma K. A Review on Infectious Pathogens and Mode of Transmission. J Plant Pathol Microbiol [Internet]. 2019;10:1–4. Available from: https://www.longdom.org/open-access/a-review-on-infectious-pathogens-and-mode-of-transmission-2157-7471-1000472.pdf.

  48. Tellier R, Li Y, Cowling BJ, Tang JW. Recognition of aerosol transmission of infectious agents: a commentary. BMC Infect Dis BMC Infectious Diseases. 2019;19:1–9.

    Google Scholar 

  49. WHO. Cleaning and Disinfection of Environmental Surfaces in the context of COVID-19: Interim guidance. Who. 2020.

  50. Ye G, Lin H, Chen L, Wang S, Zeng Z, Wang W et al. Environmental contamination of the SARS-CoV-2 in healthcare premises: An urgent call for protection for healthcare workers. Infect Dis (except HIV/AIDS). 2020.

  51. Ong SWX, Tan YK, Chia PY, Lee TH, Ng OT, Wong MSY, et al. Air, Surface Environmental, and personal protective equipment contamination by severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) from a symptomatic patient. JAMA - J Am Med Assoc. 2020;323:1610–2.

    Article  CAS  Google Scholar 

  52. Koh D. Occupational risks for COVID-19 infection. Occup Med (Chic Ill). 2020;70:3–5.

    Article  Google Scholar 

  53. Chin AWH, Chu JTS, Perera MRA, Hui KPY, Yen H-L, Chan MCW et al. Stability of SARS-CoV-2 in different environmental conditions. The Lancet Microbe [Internet]. Elsevier Ltd; 2020;1:e10. https://doi.org/10.1016/S2666-5247(20)30003-3.

  54. van Doremalen N, Bushmaker T, Morris DH, Holbrook MG, Gamble A, Williamson BN. Aerosol and Surface Stability of SARS-CoV-2 as compared with SARS-CoV-1. N Engl J Med. 2020;0–2.

  55. Exner M, Bhattacharya S. Chemical disinfection in healthcare settings: critical aspects for the development of global strategies. GMS Hyg Infect Control. 2020;15:1–25.

    Google Scholar 

  56. Rutala WA, Weber DJ. HICPAC. Guideline for Disinfection and sterilization in Healthcare Facilities. CDC Website. 2008.

  57. Mupparapu M, Kothari KRM. Review of surface disinfection protocols in dentistry: a 2019 update. Quintessence Int (Berl). 2019;50:58–65.

    Google Scholar 

  58. Boyce JM. Alcohols as surface disinfectants in healthcare settings. Infect Control Hosp Epidemiol. 2018;39:323–8.

    Article  PubMed  Google Scholar 

  59. Brian F, Leas MS, MA, Nancy Sullivan BA, Jennifer H, Han MD, David MSCE, Pegues A, Janice MD, Kaczmarek L, Craig MS, Umscheid A. M.D. MSCE. Environmental cleaning for the prevention of healthcare-associated infections. Agency Healthc Res Qual. 2015.

  60. Otter JA, Yezli S, Barbut F, Perl TM. An overview of automated room disinfection systems: When to use them and how to choose them [Internet]. Second Edi. Decontam. Hosp. Healthc. Elsevier Ltd.; 2020. https://doi.org/10.1016/B978-0-08-102565-9.00015-7.

  61. Cadnum JL, Jencson AL, Livingston SH, Li DF, Redmond SN, Pearlmutter B, et al. Evaluation of an electrostatic spray disinfectant technology for rapid decontamination of portable equipment and large open areas in the era of SARS-CoV-2. Am J Infect Control. 2020;48:951–4.

    Article  PubMed Central  PubMed  Google Scholar 

  62. Bhattacharya S, Mahbub Hossain M, Singh A. Addressing the shortage of personal protective equipment during the COVID-19 pandemic in India-A public health perspective. AIMS Public Heal. 2020;7:223–7.

    Article  Google Scholar 

  63. WHO. Guide to Local Production: WHO-recommended Handrub Formulations Introduction: Who [Internet]. 2010;9. Available from: https://www.who.int/gpsc/5may/Guide_to_Local_Production.pdf.

  64. Teksoy A, Alkan U, Eleren SÇ, Topaç BŞ, Şaǧban FOT, Başkaya HS. Comparison of indicator bacteria inactivation by the ultraviolet and the ultraviolet/hydrogen peroxide disinfection processes in humic waters. J Water Health. 2011;9:659–69.

    Article  CAS  PubMed  Google Scholar 

  65. Cutler TD, Zimmerman JJ. Ultraviolet irradiation and the mechanisms underlying its inactivation of infectious agents. Anim Health Res Rev. 2011;12:15–23.

    Article  PubMed  Google Scholar 

  66. Pugh RB, Kemick ER, Putt KS, Rial JD. United States patent - UV radiation control for disinfecting of opthalmc lenses. United States; 2016. pp. 1–14.

  67. Hiatt CW. Kinetics of the inactivation of viruses. Bacteriol Rev [Internet]. 1964;28:150–63. Available from: https://doi.org/10.1128/br.28.2.150-163.1964

    Article  CAS  PubMed  Google Scholar 

  68. Katara G, Hemvani N, Chitnis S, Chitnis V, Chitnis D. Surface disinfection by exposure to germicidal UV light. Indian J Med Microbiol. 2008. p. 241–2.

  69. Guan W, Fan X, Yan R. Effects of UV-C treatment on inactivation of Escherichia coli O157: H7, microbial loads, and quality of button mushrooms. Postharvest Biol Technol [Internet]. Elsevier B.V.; 2012;64:119–25. https://doi.org/10.1016/j.postharvbio.2011.05.017.

  70. Artés-Hernández F, Robles PA, Gómez PA, Tomás-Callejas A, Artés F. Low UV-C illumination for keeping overall quality of fresh-cut watermelon. Postharvest Biol Technol. 2010;55:114–20.

    Article  Google Scholar 

  71. Mescher Mark, Fiering Jason DC. United States Patent Application Publication (10) Pub. No.: US 2005 / 0238506 A1. 2005;1.

  72. Byrns G, Barham B, Yang L, Webster K, Rutherford G, Steiner G et al. The uses and limitations of a hand-held germicidal ultraviolet wand for surface disinfection. J Occup Environ Hyg [Internet]. Taylor & Francis; 2017;14:749–57. https://doi.org/10.1080/15459624.2017.1328106.

  73. EPA. Wastewater technology fcat sheet Ultarviolet disinfection. 1999. p. 1–7.

  74. Crittenden JC, Hu S, Hand DW, Green A, Drive T, Technological M. A kinetic model for H2O2/UV process in a completely mixed batch reactor. Water Res. 1999;33:2315–28.

    Article  CAS  Google Scholar 

  75. Dodd MC. Potential impacts of disinfection processes on elimination and deactivation of antibiotic resistance genes during water and wastewater treatment. J Environ Monit. 2012;14:1754–71.

    Article  CAS  PubMed  Google Scholar 

  76. Adak A, Mangalgiri KP, Lee J, Blaney L. UV irradiation and UV-H2O2 advanced oxidation of the roxarsone and nitarsone organoarsenicals. Water Res [Internet]. Elsevier Ltd; 2015;70:74–85. https://doi.org/10.1016/j.watres.2014.11.025.

  77. Hadjok C, Mittal GS, Warriner K. Inactivation of human pathogens and spoilage bacteria on the surface and internalized within fresh produce by using a combination of ultraviolet light and hydrogen peroxide. J Appl Microbiol. 2008;104:1014–24.

    Article  CAS  PubMed  Google Scholar 

  78. Guan W, Fan X, Yan R. Effect of combination of ultraviolet light and hydrogen peroxide on inactivation of Escherichia coli O157: H7, native microbial loads, and quality of button mushrooms. Food Control [Internet]. Elsevier Ltd; 2013;34:554–9. https://doi.org/10.1016/j.foodcont.2013.05.027.

  79. Abdel Rahman RO, Hung YT. Application of ionizing radiation in wastewater treatment: an overview. Water (Switzerland). 2020;12.

  80. Silindir M, Özer AY. Sterilization methods and the comparison of E-beam sterilization with gamma radiation sterilization. Fabad J Pharm Sci. 2009;34:43–53.

    Google Scholar 

  81. Jeong MA, Jeong RD. Applications of ionizing radiation for the control of postharvest diseases in fresh produce: recent advances. Plant Pathol. 2018;67:18–29.

    Article  Google Scholar 

  82. Boyce JM. Modern technologies for improving cleaning and disinfection of environmental surfaces in hospitals. Antimicrob Resist Infect Control [Internet]. Antimicrobial Resistance & Infection Control; 2016;5:1–10. https://doi.org/10.1186/s13756-016-0111-x.

  83. Querido MM, Aguiar L, Neves P, Pereira CC, Teixeira JP. Self-disinfecting surfaces and infection control. Colloids Surfaces B Biointerfaces [Internet]. Elsevier; 2019;178:8–21. https://doi.org/10.1016/j.colsurfb.2019.02.009.

  84. Weber DJ, Rutala WA. Self-disinfecting surfaces: Review of current methodologies and future prospects. Am J Infect Control [Internet]. Elsevier Inc; 2013;41:S31–5. https://doi.org/10.1016/j.ajic.2012.12.005.

  85. Schmidt MG, Attaway HH, Fairey SE, Steed LL, Michels HT, Salgado CD. Copper continuously limits the concentration of Bacteria Resident on Bed rails within the Intensive Care Unit. Infect Control Hosp Epidemiol. 2013;34:530–3.

    Article  PubMed  Google Scholar 

  86. Kubacka A, Diez MS, Rojo D, Bargiela R, Ciordia S, Zapico I, et al. Understanding the antimicrobial mechanism of TiO 2 -based nanocomposite films in a pathogenic bacterium. Sci Rep. 2014;4:1–9.

    Article  Google Scholar 

  87. Weber DJ, Rutala WA, Anderson DJ, Chen LF, Sickbert-Bennett EE, Boyce JM. Effectiveness of ultraviolet devices and hydrogen peroxide systems for terminal room decontamination: focus on clinical trials. Am J Infect Control. 2016;44:e77–84.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  88. Shapey S, Machin K, Levi K, Boswell TC. Activity of a dry mist hydrogen peroxide system against environmental Clostridium difficile contamination in elderly care wards. J Hosp Infect. 2008;70:136–41.

    Article  CAS  PubMed  Google Scholar 

  89. Hardy KJ, Gossain S, Henderson N, Drugan C, Oppenheim BA, Gao F, et al. Rapid recontamination with MRSA of the environment of an intensive care unit after decontamination with hydrogen peroxide vapour. J Hosp Infect. 2007;66:360–8.

    Article  CAS  PubMed  Google Scholar 

  90. Johnston MD, Lawson S, Otter JA. Evaluation of hydrogen peroxide vapour as a method for the decontamination of surfaces contaminated with Clostridium botulinum spores. J Microbiol Methods. 2005;60:403–11.

    Article  CAS  PubMed  Google Scholar 

  91. Yang GZ, Nelson BJ, Murphy RR, Choset H, Christensen H, Collins SH, et al. Combating COVID-19-The role of robotics in managing public health and infectious diseases. Sci Robot. 2020;5:1–3.

    Article  CAS  Google Scholar 

  92. Rutala WA, Gergen MF, Weber DJ. Room Decontamination with UV Radiation. Infect Control Hosp Epidemiol. 2010;31:1025–9.

    Article  PubMed  Google Scholar 

  93. Hu D, Zhong H, Li S, Tan J, He Q. Segmenting areas of potential contamination for adaptive robotic disinfection in built environments. Build Environ. 2020;184:107226.

    Article  PubMed Central  PubMed  Google Scholar 

  94. Begić A. Application of Service Robots for Disinfection in Medical Institutions. Lect Notes Networks Syst. 2018;28:1056–65.

    Article  Google Scholar 

  95. Sanchez AG, Smart WD. Surafce disinfection using ultraviolet light with a mobile manipulation robot. 2021.

  96. Ruan K, Wu Z, Xu Q. Smart cleaner: a new autonomous indoor disinfection robot for combating the COVID-19 pandemic. Robotics. 2021;10:87.

    Article  Google Scholar 

  97. Potenza A, Kiselev A, Saffiotti A, Loutfi A. Source modular robotic rystem for telepresence and remote disinfection. 2021; Available from: http://arxiv.org/abs/2102.01551.

  98. Crops F, Mohammed MN, Arif IS, Ghabban FM, Al-yousif S, Yusuf E. Smart IoT technologies for combating COVID-19 pandemic: autonomous spray disinfection system based on robotics. Turk J. 2021;26:60–5.

    Google Scholar 

  99. Deepu D, Mohan A, Dangat A, Dhamane R, Pai S. Robot prototype for disinfection of surfaces. Int Res J Eng Technol. 2021;8:1064–8.

    Google Scholar 

  100. Vyshnavi A, Manasa A, Hamsika C, Shalini P. UV disinfection robot with automatic switching on human detection. EAI Endorsed Trans Internet Things. 2020;6:166364.

    Article  Google Scholar 

  101. Andersen BM, Bånrud H, Bøe E, Bjordal O, Drangsholt F. Comparison of UVC light and chemicals for disinfection of surfaces in hospital isolation units. Infect Control Hosp Epidemiol. 2006;27:729–34.

    Article  CAS  PubMed  Google Scholar 

  102. Mcdonnell G, Russell AD. Antiseptics and disinfectants: activity, action, and resistance. Clin Microbiol Rev. 1999;12:147–79.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  103. Goyal SM, Chander Y, Yezli S, Otter JA. Evaluating the virucidal efficacy of hydrogen peroxide vapour. J Hosp Infect [Internet]. Elsevier Ltd; 2014;86:255–9. https://doi.org/10.1016/j.jhin.2014.02.003.

  104. Kampf G, Todt D, Pfaender S, Steinmann E. Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents. J Hosp Infect [Internet]. Elsevier Ltd; 2020;104:246–51. https://doi.org/10.1016/j.jhin.2020.01.022.

  105. Addie DD, Boucraut-Baralon C, Egberink H, Frymus T, Gruffydd-Jones T, Hartmann K, et al. Disinfectant choices in veterinary practices, shelters and households: ABCD guidelines on safe and effective disinfection for feline environments. J Feline Med Surg. 2015;17:594–605.

    Article  PubMed  Google Scholar 

  106. Sozzi E, Baloch M, Strasser J, Fisher MB, Leifels M, Camacho J et al. A bioassay-based protocol for chemical neutralization of human faecal wastes treated by physico-chemical disinfection processes: A case study on benzalkonium chloride. Int J Hyg Environ Health [Internet]. Elsevier; 2019;222:155–67. https://doi.org/10.1016/j.ijheh.2018.07.002.

  107. Eggers M, Koburger-Janssen T, Eickmann M, Zorn J. In vitro bactericidal and virucidal efficacy of povidone-iodine gargle/mouthwash against respiratory and oral tract pathogens. Infect Dis Ther [Internet]. Springer Healthcare; 2018;7:249–59. https://doi.org/10.1007/s40121-018-0200-7.

Download references

Funding

No funding has been taken from any government or private funding agencies for this work.

Author information

Authors and Affiliations

Authors

Contributions

Sri S.S. Basak has developed the concept and written the paper. Dr. A. Adak has contributed to review and final editing of the article.

Corresponding author

Correspondence to Asok Adak.

Ethics declarations

Ethics approval and consent to participate

The manuscript has not been submitted to another journal simultaneously. The article has not been published elsewhere in any form or language. The results have been presented honestly and without fabrication, falsification, or inappropriate data manipulation.

Consent for publication

The authors give consent for the publication of the article.

Competing interests

There are no conflicts of interest between the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basak, S.S., Adak, A. Physicochemical methods for disinfection of contaminated surfaces – a way to control infectious diseases. J Environ Health Sci Engineer (2024). https://doi.org/10.1007/s40201-024-00893-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40201-024-00893-2

Keywords

Navigation