Skip to main content
Log in

Assessment of the environmental performance of sugarcane companies based on waste disposed of on the soil

  • Research article
  • Published:
Journal of Environmental Health Science and Engineering Aims and scope Submit manuscript

Abstract

Purpose

This study aimed to present an index (IEP) to evaluate the environmental performance of the sugar-energy industrial process based on the waste generated in manufacturing operations. The residues considered in this study were: vinasse, filter cake, ash and soot, residual waters, and sewage sludge.

Methods

The index created was developed to take into account, and to be directly proportional to the environmental impact of each residue generated by the sugar-energy production, to the relative spatial dispersion that each waste can reach, and to the environmental fragility of the hydrographic basin where the plant under evaluation is inserted and works. The lower IEP, the better the company valuation.

Results

The index was tested in a real company and exhibited an IEP Total = 1,4.1013 km2.p/yr, which shows weak waste management by the enterprise. Vinasse was responsible for 50% of the IEP Total, while filter cake contributed 45% to it. Ash and soot, residual waters, and sewage sludge were together responsible for 5% of the IEP Total.

Conclusion

The theoretical conception used in this study is inspiring for the development of new studies on environmental assessment measurement. The study showed that vinasse is the most problematic waste in environmental terms, a conclusion that is in line with academic studies. Nevertheless, the waste with the greatest potential impact on the environment is filter cake. Despite this, filter cake presented a lower IEP(i) than vinasse, given that its negative impact on the basin is smaller. Both wastes contributed 95% of the IEP Total, which places them among the residues to be managed with greater attention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Source: Authors (2021)

Fig. 2

Source: Authors (2021)

Fig. 3

Source: Authors (2021)

Fig. 4

Source: Authors (2021)

Fig. 5

Source: Authors (2021)

Fig. 6

Source: Authors (2021)

Fig. 7

Source: Authors (2021)

Fig. 8

Source: Authors (2021)

Fig. 9

Source: Authors (2021)

Fig. 10

Source: Authors (2021)

Fig. 11

Source: Authors (2021)

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Adami SF, Coelho RM, Chiba MK, de Moraes JFL. Environmental fragility and susceptibility mapping using geographic information systems: applications on Ribeirão do Pinhal watershed (Limeira, State of São Paulo). Acta Scientiaru. 2021. https://doi.org/10.4025/actascitechnol.v34i4.10005

  2. Manual de conservação e reúso de água na agroindústria sucroenergética / Agência Nacional de Águas; Federação das Indústrias do Estado de São Paulo; União da Indústria da Cana-de-Açúcar; Centro de Tecnologia Canavieira. Brasília: ANA, 2009.

  3. Associação Brasileira de Normas Técnicas. NBR ISO 14031: Gestão ambiental – Avaliação de desempenho ambiental - Diretrizes. Rio de Janeiro: ABNT; 2015.

    Google Scholar 

  4. Bellenger MJ, Herlihy AT. Performance-based environmental index weights: Are all metrics created equal? Ecol Econ. 2010. https://doi.org/10.1016/j.ecolecon.2009.11.021.

    Article  Google Scholar 

  5. Bettiol W, Ghini R. Impacts of sewage sludge in tropical soil: A case study in Brazil. Appl Environ Soil Sci. 2011. https://doi.org/10.1155/2011/212807.

    Article  Google Scholar 

  6. Bezerra UA, de Souza Silva LTM, de Lima Sales LG. Uso de Geotecnologias para o mapeamento da Fragilidade Ambiental da Sub-bacia do Rio Piancó, PB. Congresso Int Diversidade Semiárido. 2016;1:1–11.

    Google Scholar 

  7. Bordonal, RDO, Carvalho JLN, Lal R, de Figueiredo EB, de Oliveira BG, and Scala NL Jr. Sustainability of sugarcane production in Brazil. A review. Agron Sustain Dev. 2018. https://doi.org/10.1007/s13593-018-0490-x

  8. Brännlund R, Lundgren T, Söderholm P. Convergence of carbon dioxide performance across Swedish industrial sectors: An environmental index approach. Energy Econ. 2015. https://doi.org/10.1016/j.eneco.2015.07.004.

    Article  Google Scholar 

  9. Castillo-Vergara M, Alvarez-Marin A, Carvajal-Cortes S, Salinas-Flores S. Implementation of a cleaner production agreement and impact analysis in the grape brandy (pisco) industry in Chile. J Clean Prod. 2015. https://doi.org/10.1016/j.jclepro.2013.09.048.

    Article  Google Scholar 

  10. Chacón EAV, de SáMendonça E, da Silva RR, de Lima PC, da Silva IR, Cantarutti RB. Decomposição de fontes orgânicas e mineralização de formas de nitrogênio e fósforo. Revi Ceres. 2011. https://doi.org/10.1590/S0034-737X2011000300019.

    Article  Google Scholar 

  11. Christofoletti CA. Avaliação da toxicidade de resíduos industriais e urbanos aplicados na agricultura. Rio Claro: Universidade Estadual Paulista; 2013.

    Google Scholar 

  12. CóJúnior C, Marques MO, Tasso Júnior LC. Efeito residual de quatro aplicações anuais de lodo de esgoto e vinhaça na qualidade tecnológica da cana-de-açúcar. Engenharia Agríc. 2008. https://doi.org/10.1590/S0100-69162008000100020.

    Article  Google Scholar 

  13. Eykelbosh AJ, Johnson MS, de Queiroz ES, Dalmagro HJ, Couto EG. Biochar from sugarcane filter cake reduces soil CO2 emissions relative to raw residue and improves water retention and nutrient availability in a highly-weathered tropical soil. PLoSONE. 2014. https://doi.org/10.1371/journal.pone.0098523.

    Article  Google Scholar 

  14. Feil AA, Schreiber D. Sustentabilidade e desenvolvimento sustentável: Desvendando as sobreposições e alcances de seus significados. Cadernos EBAPE.BR. 2017.https://doi.org/10.1590/1679-395157473

  15. Formann S, Hahn A, Janke L, Stinner W, Sträuber H, Logroño W, Nikolausz M. Beyond sugar and ethanol production: Value generation opportunities through sugarcane residues. Front Energy Res. 2020. https://doi.org/10.3389/fenrg.2020.579577.

    Article  Google Scholar 

  16. García-Álvarez MT, Moreno B. Environmental performance assessment in the EU: A challenge for the sustainability. J Clean Prod. 2018. https://doi.org/10.1016/j.jclepro.2018.08.284.

    Article  Google Scholar 

  17. George PA, Ochoa JJ, Eras C, Gutierrez AS, Hens L, Vandecasteele C. Residue from sugarcane juice filtration (Filter Cake): Energy use at the sugar factory. Waste Biomass. 2010. https://doi.org/10.1007/s12649-010-9046-2.

    Article  Google Scholar 

  18. Huijbregts MAJ, Steinmann ZJN, Elshou PMF, GeaStam FV, Vieira M, Zijp M, Hollander A, van Zelm R. ReCiPe2016: a harmonised life cycle impact assessment method at midpoint and endpoint level. Int J Life Cycle Assess. 2017. https://doi.org/10.1007/s11367-016-1246-y.

    Article  Google Scholar 

  19. Vilela Junior A, Demajorovic J. Modelos e ferramentas de gestão ambiental: desafios e perspectivas para as organizações. São Paulo: Senac, 2019.

  20. Kawakubo FS, Morato RG, Campos KC, Luchiari A, Ross JLS. Caracterização empírica da fragilidade ambiental utilizando geoprocessamento. Simpósio Bras Sensoriamento Remoto. 2005;12:2203–10.

    Google Scholar 

  21. Kim BSM, Angeli JLF, Ferreira PAL, de Mahiques MM, Lopes Figueira RC. Critical evaluation of different methods to calculate the Geoaccumulation Index for environmental studies: A new approach for Baixada Santista – Southeastern Brazil. Marine Pollut Bull. 2018. https://doi.org/10.1016/j.marpolbul.2017.12.049.

    Article  Google Scholar 

  22. Macedo PC. Avaliação do desempenho de argamassas com adição de cinza do bagaço de cana-de-açúcar. Ilha Solteira: Universidade Estadual Paulista; 2009.

    Google Scholar 

  23. Marinho JFU, Correia JE, de Castro Marcato AC, Pedro-Escher J, Fontanetti CS. Sugar cane vinasse in water bodies: Impact assessed by liver histopathology in tilapia. Ecotoxicol Environ Saf. 2014. https://doi.org/10.1016/j.ecoenv.2014.09.010.

    Article  Google Scholar 

  24. Moldan B, Janoušková S, Hák T. How to understand and measure environmental sustainability: Indicators and targets. Ecol Ind. 2012. https://doi.org/10.1016/j.ecolind.2011.04.033.

    Article  Google Scholar 

  25. Nimmanterdwong P, Chalermsinsuwan B, Østergård H, Piumsomboon P. Environmental performance assessment of Napier grass for bioenergy production. J Clean Prod. 2017. https://doi.org/10.1016/j.jclepro.2017.07.126.

    Article  Google Scholar 

  26. Oliveira OH. Parâmetros genéticos do crescimento inicial da cana-de-açúcar irrigada com água residuária. Pombal: Universidade Federal de Campina Grande, 2017.

  27. Rebelato MG, Madaleno LL, Rodrigues AM. Avaliação do desempenho ambiental dos processos industriais de usinas sucroenergéticas: Um estudo na bacia hidrográfica do rio Mogi Guaçu. Rev Adm UNIMEP. 2014. https://doi.org/10.15600/1679-5350/rau.v12n3p122-151

  28. Rebelato MG, Madaleno LL, Rodrigues AM. Análise do desempenho ambiental das usinas sucroenergéticas localizadas na Bacia Hidrográfica do Rio Mogi Guaçu. Engenharia Sanit Ambient. 2016. https://doi.org/10.1590/S1413-41522016126712.

    Article  Google Scholar 

  29. Ríos A-M, Picazo-Tadeo AJ. Measuring environmental performance in the treatment of municipal solid waste: The case of the European Union-28. EcologicalIndicators. 2021. https://doi.org/10.1016/j.ecolind.2020.107328.

    Article  Google Scholar 

  30. Ross JLS. Análise empírica da fragilidade dos ambientes naturais e antropizados. Rev Departamento Geografia. 1994. https://doi.org/10.7154/RDG.1994.0008.0006.

    Article  Google Scholar 

  31. Ross JLS. Landforms and environmental planning: Potentialities and Fragilities. Rev Departamento Geografia. 2012. https://doi.org/10.7154/RDG.2012.0112.0003.

    Article  Google Scholar 

  32. Sebbah B, Alaoui OY, Wahbi M, Maâtouk M, Achhab NB. QGIS-Landsat Indices plugin (Q-LIP): Tool for environmental indices computing using Landsat data. Environ Model Soft. 2021. https://doi.org/10.1016/j.envsoft.2021.104972.

    Article  Google Scholar 

  33. Silalertruksa T, Pongpat P, Gheewala SH. Life cycle assessment for enhancing environmental sustainability of sugarcane biorefinery in Thailand. J Clean Prod. 2017. https://doi.org/10.1016/j.jclepro.2016.06.010.

    Article  Google Scholar 

  34. Singh RK, Ramalinga MH, Gupta SK, Kumar DA. An overview of sustainability assessment methodologies. Ecol Ind. 2009. https://doi.org/10.1016/j.ecolind.2008.05.011.

    Article  Google Scholar 

  35. Široka M, StjepanPiličić TM, Lacalle I, Traven L. A novel approach for assessing the ports’ environmental impacts in real time – The IoT based port environmental index. Ecol Ind. 2021. https://doi.org/10.1016/j.ecolind.2020.106949.

    Article  Google Scholar 

  36. Song M-L, Fisher R, Wang J-L, Cui L-B. Environmental performance evaluation with big data: theories and methods. Ann Oper Res. 2018. https://doi.org/10.1007/s10479-016-2158-8.

    Article  Google Scholar 

  37. Souza EGS, and Rebelato MG. Avaliação da fragilidade ambiental da bacia hidrográfica do Baixo Mogi com uso da geotecnologia. Braz J Anim Environ Res. 2021. https://doi.org/10.34188/bjaerv4n1-036

  38. Todorov V, Marinova D. Modelling sustainability. Math Comput Simul. 2011. https://doi.org/10.1016/j.matcom.2010.05.022.

    Article  Google Scholar 

  39. Tri DQ, Don NC, Ching CY, Mishra PK. Application of environmental sensitivity index (ESI) maps of shorelines to coastal oil spills: a case study of Cat Ba Island, Vietnam. Environ Earth Sci. 2015. https://doi.org/10.1007/s12665-015-4380-0

  40. Valle IC, Francelino MR, Pinheiro HSK. Mapeamento da fragilidade ambiental na bacia do Rio Aldeia Velha, RJ. Floresta e Ambiente. 2016. https://doi.org/10.1590/2179-8087.107714

  41. Welikhe P, Brouder SM, Volenec JJ, Gitau M, Turco RF. Development of phosphorus sorption capacity-based environmental indices for tile-drained systems. J Environ Qual. 2020. https://doi.org/10.1002/jeq2.20044.

    Article  Google Scholar 

  42. Yang M, Khan FI, Sadiq R, Amyotte P. A rough set-based quality function deployment (QFD) approach for environmental performance evaluation: a case of offshore oil and gas operations. J Clean Prod. 2011. https://doi.org/10.1016/j.jclepro.2011.04.005.

    Article  Google Scholar 

  43. Yang X, He L, Tian S, Xia Y, Wang D. Construction of China’s Green Institutional Environmental Index: Using Functional Data Analysis method. Soc Ind Res. 2021. https://doi.org/10.1007/s11205-020-02576-5

  44. Zhou P, Delmas MA, Kohli A. Constructing meaningful environmental indices: A nonparametric frontier approach. J Environ Econ Manag. 2017. https://doi.org/10.1016/j.jeem.2017.04.003.

    Article  Google Scholar 

  45. Zuo X, Hua H, Dong Z, Hao C. Environmental performance index at the provincial level for China 2006–2011. Ecol Ind. 2017. https://doi.org/10.1016/j.ecolind.2016.12.016.

    Article  Google Scholar 

Download references

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo Girotto Rebelato.

Ethics declarations

Conflicts of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva Souza, E.G., Rebelato, M.G. Assessment of the environmental performance of sugarcane companies based on waste disposed of on the soil. J Environ Health Sci Engineer (2023). https://doi.org/10.1007/s40201-023-00880-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40201-023-00880-z

Keywords

Navigation