Skip to main content

Resource utilization of hazardous Cr/Fe-rich sludge: synthesis of erdite flocculant to treat real electroplating wastewater

Abstract

Cr/Fe-bearing sludge is a hazardous solid waste, produced at mass production in smelting, plating and surface finishing industries. Such waste is commonly treated by chemical detoxification and safety landfill, whereas only a few Cr-rich sludge is recycled as a tanning reagent. In this study, a novel route was developed to recycle Cr/Fe-bearing sludge as erdite-bearing flocculant for wastewater treatment. Results showed that two sludges were irregular aggregates, one of which contained 1.6 wt.% Cr (short for LS) and the other contained 4.2 wt.% Cr (HS). After hydrothermal treatment, stable Cr(III)/S-bearing product was formed from the Cr(VI) reduction in the sludges. Conversely, erdite was generated in nanorod form with diameter and length of 200 nm and 0.5–1 μm from LS, respectively, whereas grew radially to 1.5–2.5 μm for HS. The two erdite-bearing products were spontaneously hydrolysed to Fe/S-bearing flocs and showed similar performance in the treatment of real electroplating effluent with 91.55, 1.94 and 0.25 mg/L of Zn, Ni and Cr, respectively. For instance, by adding 1 g/L product of LS, the release of Cr from the products did not occur, and the residual Zn, Ni and Cr in the effluent was 0.25, 0.65 and 0.17 mg/L, respectively, which met the discharge standard of the electroplating industry. With the two converted products, the residual Zn/Ni/Cr concentrations were apparently lower than those of the raw sludges and other common reagents (e.g. polymeric ferric sulphate, activated carbon and diatomite). Thus, such erdite-bearing products could serve as a flocculant and then be applied in electroplating wastewater treatment.

Highlights

  • Aggregated sludge was converted to nanorod erdite-bearing flocculant;

  • Hydrothermal detoxication of Cr(VI) as Cr(III) also occurred;

  • Nanorod flocculant was superior for Zn/Ni/Cr removal compared with PFS;

  • Cr(III) was stable in the flocculated deposit without release to wastewater.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Baral A, Engelken RD. Chromium-based regulations and greening in metal finishing industries in the USA. Environ Sci Pol. 2002;5(2):121–33.

    Article  CAS  Google Scholar 

  2. Oruko RO, Selvarajan R, Ogola HJO, Edokpayi JN, Odiyo JO. Contemporary and future direction of chromium tanning and management in sub Saharan Africa tanneries. Process Saf Environ Prot. 2020;133:369–86.

    Article  CAS  Google Scholar 

  3. Gao Y, Xia J. Chromium contamination accident in China: viewing environment policy of China. Environ Sci Technol. 2011;45:8605–6.

    Article  CAS  Google Scholar 

  4. HuangBensheng XQ, TangXiaowen YM, LiuQingcai. Study on de toxication and reduction of chromium residue disposed by cold agglomerating pellets. Techniques and equipment for environmental pollution. Control. 2005;6(3):42–7.

    Google Scholar 

  5. Ku C-C, Wang H-P, Lee P-H, Hsiao M, Huang H-L, Wang H. Speciation of chromium in an electroplating sludge during thermal stabilization. B Environ Contam Tox. 2003;71(4):860–5.

    Article  CAS  Google Scholar 

  6. Zhi S, Shi-Li Z, Yi Z. Experimental research on the resourceful disposal of chromium-containing residues in cleaner production technology of chromates. Multipurpose Utilization Miner Resour. 2005;6:36–9.

    Google Scholar 

  7. Zeng P, Du J, Song Y, Liu Y, Liu R, Zhang P, Xiao S. Efficiency comparison for treatment of amantadine pharmaceutical wastewater by Fenton, ultrasonic, and Fenton/ultrasonic processes. Environ Earth Sci. 2015;73(9):4979–87.

    Article  CAS  Google Scholar 

  8. Diakonov II, Schott J, Martin F, Harrichourry JC, Escalier J. Iron(III) Solubility and speciation in aqueous solutions. Experimental study and modelling: part 1. Hematite solubility from 60 to 300°C in NaOH–NaCl solutions and thermodynamic properties of Fe(OH)4−(aq). Geochim Cosmochim Ac. 1999;63(15):2247–61.

    Article  CAS  Google Scholar 

  9. OuYang S, Zhang Y, Chen Y, Zhao Z, Wen M, Li B, Shi Y, Zhang M, Liu S. Preparation of glass-ceramics using chromium-containing stainless steel slag: crystal structure and solidification of heavy metal chromium. Sci Rep. 2019;9(1):1–9.

    Google Scholar 

  10. Zhifeng X, Hongxing Z, Chengyan W, Wenhui Y, Bo Y. Recovery of chromium from sulphuric acid leaching solutions of mixed electroplating sludge by selective precipitation. Nonferrous Metals Eng. 2015;6(5):7–11.

    Google Scholar 

  11. Abdel-Baki M, El-Diasty F. Optical properties of oxide glasses containing transition metals: case of titanium-and chromium-containing glasses. Curr Opinion Solid State Mater Sci. 2006;10(5–6):217–29.

    Article  CAS  Google Scholar 

  12. Hu Y, Liang S, Yang J, Chen Y, Ye N, Ke Y, Tao S, Xiao K, Hu J, Hou H. Role of Fe species in geopolymer synthesized from alkali-thermal pretreated Fe-rich Bayer red mud. Constr Build Mater. 2019;200:398–407.

    Article  CAS  Google Scholar 

  13. Jung W-g, Hossain ST, Johra FT, Kim J-h, Chang Y-c. Reduction of chromium ore by recycled silicon cutting sludge waste with carbon addition. J Iron Steel Res Int. 2019;26(8):806–17.

    Article  CAS  Google Scholar 

  14. Hamdane H, Tamraoui Y, Mansouri S, Oumam M, Bouih A, El Ghailassi T, Boulif R, Manoun B, Hannache H. Effect of alkali-mixed content and thermally untreated phosphate sludge dosages on some properties of metakaolin based geopolymer material. Mater Chem Phys. 2020;248:122938.

    Article  CAS  Google Scholar 

  15. Liang Q, Liu Y, Chen M, Ma L, Yang B, Li L, Liu Q. Optimized preparation of activated carbon from coconut shell and municipal sludge. Mater Chem Phys. 2020;241:122327.

    Article  CAS  Google Scholar 

  16. Zhu S, Lin X, Dong G, Yu Y, Yu H, Bian D, Zhang L, Yang J, Wang X, Huo M. Valorization of manganese-containing groundwater treatment sludge by preparing magnetic adsorbent for cu(II) adsorption. J Environ Manag. 2019;236:446–54.

    Article  CAS  Google Scholar 

  17. Zhu S, Song X, Chen Y, Dong G, Sun T, Yu H, Yu Y, Xie X, Huo M. Upcycling of groundwater treatment sludge to an erdite nanorod as a highly effienct activation agent of peroxymonosulfate for wastewater treatment. Chemosphere. 2020;252:126586.

    Article  CAS  Google Scholar 

  18. Czamanske GK, Leonard BF, Clark JR. Erdite, a new hydrated sodium iron sulfide mineral. Am Mineral. 1980;65:509–15.

    CAS  Google Scholar 

  19. Taylor P, Shoesmith DW. The nature of green alkaline iron sulfide solutions and the preparation of sodium iron(III) sulfide, NaFeS2. Can J Chem. 1978;56(22):2797–802.

    Article  CAS  Google Scholar 

  20. Konnert JA. The crystal structure of erdite, NaFeS2.2H2O. Am Mineral. 1980;65:516–21.

    CAS  Google Scholar 

  21. Lassin A, Piantone P, Crouzet C, Bodénan, F.o., and Blanc, P. Estimated thermodynamic properties of NaFeS2 and erdite (NaFeS2.2H2O). Appl Geochem. 2014;45:14–24.

    Article  CAS  Google Scholar 

  22. Li XB, Niu F, Tan J, Liu GH, Qi TG, Peng ZH, Zhou QS. Removal of S2 ion from sodium aluminate solutions with sodium ferrite. T Nonferr Metal Soc. 2016;26(5):1419–24.

    Article  CAS  Google Scholar 

  23. Liu Y, Khan A, Wang Z, Chen Y, Zhu S, Sun T, Liang D, Yu H. Upcycling of electroplating sludge to prepare Erdite-bearing Nanorods for the adsorption of heavy metals from electroplating wastewater effluent. Water. 2020;12(4):1027.

    Article  CAS  Google Scholar 

  24. Ahmadi E, Yousefzadeh S, Mokammel A, Miri M, Ansari M, Arfaeinia H, Badi MY, Ghaffari HR, Rezaei S, Mahvi AH. Kinetic study and performance evaluation of an integrated two-phase fixed-film baffled bioreactor for bioenergy recovery from wastewater and bio-wasted sludge. Renew Sust Energ Rev. 2020;121:109674.

    Article  CAS  Google Scholar 

  25. Ahmadi E, Shokri B, Mesdaghinia A, Nabizadeh R, Reza Khani M, Yousefzadeh S, Salehi M, Yaghmaeian K. Synergistic effects of α-Fe2O3-TiO2 and Na2S2O8 on the performance of a non-thermal plasma reactor as a novel catalytic oxidation process for dimethyl phthalate degradation. Sep Purif Technol. 2020;250:117185.

    Article  CAS  Google Scholar 

  26. Babu BR, Bhanu SU, Meera KS. Waste minimization in electroplating industries: a review. J Environ Sci Health Part C. 2009;27(3):155–77.

    Article  CAS  Google Scholar 

  27. Boulanger C. Thermoelectric material electroplating: a historical review. J Electron Mater. 2010;39(9):1818–27.

    Article  CAS  Google Scholar 

  28. Bukatova GA, Polyakov EG. Efficiency of tantalum electroplate in the presence of strong depassivator. Prot Met. 2002;38(4):359–62.

    Article  CAS  Google Scholar 

  29. Zhao X, Wang H, Chen F, Mao R, Liu H, Qu J. Efficient treatment of an electroplating wastewater containing heavy metal ions, cyanide, and organics by H2O2 oxidation followed by the anodic Fenton process. Water Sci Technol. 2013;68(6):1329–35.

    Article  CAS  Google Scholar 

  30. Zhu S, Wang Z, Lin X, Sun T, Qu Z, Chen Y, Su T, Huo Y. Effective recycling of cu from electroplating wastewater effluent via the combined Fenton oxidation and hydrometallurgy route. J Environ Manag. 2020;271:110963.

    Article  CAS  Google Scholar 

  31. Safizadeh F, Ghali E, Houlachi G. Electrocatalysis developments for hydrogen evolution reaction in alkaline solutions–a review. Int J Hydrog Energy. 2015;40(1):256–74.

    Article  CAS  Google Scholar 

  32. Yu-Jen S, Chih-Ping L, Yao-Hui H. Application of Fered-Fenton and chemical precipitation process for the treatment of electroless nickel plating wastewater. Sep Purif Technol. 2013;104:100–5.

    Article  CAS  Google Scholar 

  33. Bayuo J. An extensive review on chromium(VI) removal using natural and agricultural wastes materials as alternative biosorbents. J Environ Health Sci Eng. 2021;19(1):1193–207.

    Article  CAS  Google Scholar 

  34. Basak G, Lakshmi V, Chandran P, Das N. Removal of Zn(II) from electroplating effluent using yeast biofilm formed on gravels: batch and column studies. J Environ Health Sci Eng. 2014;12(1):8.

    Article  CAS  Google Scholar 

  35. Rahman L, Wen SSY, Fatt WH, Arshad SEB, Musta B, Abdullah MH (2010) Heavy metal removal from electroplating wastewater using acacia cellulose based polymeric chelating ligand. In Materials Research Society Symposium Proceedings

  36. Rajoria S, Vashishtha M, Sangal VK. Review on the treatment of electroplating industry wastewater by electrochemical methods. Mater Today Proc. 2021;47:1472–9.

    Article  CAS  Google Scholar 

  37. Sainger PA, Dhankhar R, Sainger M, Kaushik A, Singh RP. Assessment of heavy metal tolerance in native plant species from soils contaminated with electroplating effluent. Ecotoxicol Environ Saf. 2011;74(8):2284–91.

    Article  CAS  Google Scholar 

  38. Pacella A, Fantauzzi M, Turci F, Cremisini C, Montereali MR, Nardi E, Atzei D, Rossi A, Andreozzi GB. Dissolution reaction and surface iron speciation of UICC crocidolite in buffered solution at pH 7.4: a combined ICP-OES, XPS and TEM investigation. Geochim Cosmochim Ac. 2014;127:221–32.

    Article  CAS  Google Scholar 

  39. Dambies L, Guimon C, Yiacoumi S, Guibal E. Characterization of metal ion interactions with chitosan by X-ray photoelectron spectroscopy. Colloid Surface A. 2001;177(2):203–14.

    Article  CAS  Google Scholar 

  40. Yousefzadeh S, Yaghmaeian K, Mahvi AH, Nasseri S, Alavi N, Nabizadeh R. Comparative analysis of hydrometallurgical methods for the recovery of cu from circuit boards: optimization using response surface and selection of the best technique by two-step fuzzy AHP-TOPSIS method. J Clean Prod. 2020;249:119401.

    Article  CAS  Google Scholar 

  41. Ahmadi E, Kakavandi B, Azari A, Izanloo H, Gharibi H, Mahvi AH, Javid A, Hashemi SY. The performance of mesoporous magnetite zeolite nanocomposite in removing dimethyl phthalate from aquatic environments. Desalin Water Treat. 2016;57(57):27768–82.

    CAS  Google Scholar 

  42. Matin AR, Yousefzadeh S, Ahmadi E, Mahvi A, Alimohammadi M, Aslani H, Nabizadeh R. A comparative study of the disinfection efficacy of H2O2/ferrate and UV/H2O2/ferrate processes on inactivation of Bacillus subtilis spores by response surface methodology for modeling and optimization. Food Chem Toxicol. 2018;116:129–37.

    Article  CAS  Google Scholar 

  43. Peng G, Deng S, Liu F, Qi C, Tao L, Li T, Yu G. Calcined electroplating sludge as a novel bifunctional material for removing Ni(II)-citrate in electroplating wastewater. J Clean Prod. 2020;262:121416.

    Article  CAS  Google Scholar 

  44. Chen Y, Li H, Wang Z, Tao T, Hu C. Photoproducts of tetracycline and oxytetracycline involving self-sensitized oxidation in aqueous solutions: effects of Ca2+ and Mg2+. J Environ Sci-China. 2011;23(10):1634–9.

    Article  CAS  Google Scholar 

  45. Andrus ME. A review of metal precipitation chemicals for metal-finishing applications. Met Finish. 2000;98(11):20–3.

    Article  CAS  Google Scholar 

  46. Qinghua T. Elemental behavior of multi-component metal powders from waste printed circuit board during low-temperature alkaline smelting. Chin J Nonferrous Metals. 2013;23(6):1757–63.

    Google Scholar 

  47. Babaei A-A, Goudarzi G, Rad HD, Atari L. Analysis of heavy metal contents by using poly aluminum chloride water treatment residuals and their implications for land application. Asian J Chem. 2014;26(22):7651–6.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Programme of China (2019YFE0117900) and partly funded by the National Natural Science Foundation of China (Grant Nos. 52070038 and 51878134) and the Innovative Research Team Program of Jilin Province (No. 20210509043RQ).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhu Suiyi or Wang Xianze.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, C., Ying, Z., Yanwen, L. et al. Resource utilization of hazardous Cr/Fe-rich sludge: synthesis of erdite flocculant to treat real electroplating wastewater. J Environ Health Sci Engineer 20, 509–519 (2022). https://doi.org/10.1007/s40201-022-00796-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40201-022-00796-0

Keywords

  • Cr/Fe-rich sludge
  • Wastewater treatment
  • Erdite
  • Flocculant
  • Resource utilisation