Skip to main content
Log in

An experimental investigation on the oxidative desulfurization of a mineral lubricant base oil

  • Research article
  • Published:
Journal of Environmental Health Science and Engineering Aims and scope Submit manuscript

Abstract

In the present study, the oxidative desulfurization (ODS) of Sn 650 base oil with total sulfur content of 10,000 ppmw has been investigated experimentally. The response surface methodology (RSM) considering Box-Behnken design (BBD) was applied to examine the impacts of the oxidation temperature (30–70˚C), hydrogen peroxide to sulfur molar ratio (2–8), and formic acid to sulfur molar ratio (20–60) on the sulfur removal. In the next step, the appropriate values of the independent variables such as stirrer speed (750–1250 rpm), reaction time (60–180 min), and the number of extraction stages (1–4) were determined based on the optimal result obtained from the BBD. The best performance of the ODS process was found at a reaction temperature of 58˚C, an oxidant to sulfur molar ratio of 7.35, a formic acid to sulfur molar ratio of 58.5, a reaction time of 150 min, and a stirrer speed of 1250 rpm for the oxidation reaction. The achieved sulfur removal after oxidation followed by liquid-liquid extraction was 32 %, and 60 % for one extraction and three extraction stages, respectively. The changes in the base oil specifications after the ODS treatment were also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. Fourier-transform infrared spectroscopy.

References

  1. Mackerer CR, Griffis LC, Grabowski JS, Reitman FA. Petroleum mineral oil refining and evaluation of cancer hazard. Appl Occup Environ Hyg. 2003. https://doi.org/10.1080/10473220390237467.

    Article  Google Scholar 

  2. Lucien J, Dutoto G. Process for the preparation of a lubricating base oil. U.S. Pat. 1990: 4,906,350 A.

  3. Mang T, Lingg G. Lubricants and Lubrication. 3rd ed. Hoboken: Wiley; 2018.

  4. Sequeira A. Lubricant base oil and wax processing.,1st ed. Boca Raton: CRC Press; 1994.

  5. Stout SA, Wang Z. In: Stout SA, Wang Z, editors. Chemical fingerprinting methods and factors affecting petroleum fingerprints in the environment. Boston: Academic; 2016. p. 61–129.

    Google Scholar 

  6. API. Engine Oil Licensing and Certification System. 17th ed. Washington, DC: American Petroleum Inst.; 2012.

  7. Norrby T, Jonsson AL. Oxidation stability and base oil sulphur. The European Lubricants Industry Magazine. 2018;119(1):32–8.

  8. Javadli R, de Klerk A. Desulfurization of heavy oil. Appl Petrochem Res. 2012. https://doi.org/10.1007/s13203-012-0006-6.

    Article  Google Scholar 

  9. Hourani N, Muller H, Adam FM, Panda SK, Witt M, Al-Hajji. Sarathy AA. SM. Structural level characterization of base oils using advanced analytical techniques. Energy Fuels. 2015. https://doi.org/10.1021/acs.energyfuels.5b00038.

  10. Matsunaga A, Kusayanagi S. Determination of sulfur compounds in lubricant base oils by palladium chloride-impregnated thin layer chromatography. J Jpn Pet Inst. 1981. https://doi.org/10.1627/jpi1958.24.298.

    Article  Google Scholar 

  11. Wang Y, Liang X, Shu G, Dong l. Effects of lube oil sulfur and ash on size, morphology and element composition of diesel particles. SAE Int. 2016. https://doi.org/10.4271/2016-01-0999.

    Article  Google Scholar 

  12. Froelund K, Owens EC, Frame E, Buckingham JP, Garbak J, Tseregounis S, Jackson A. Impact of lubricant oil on regulated emissions of a light-duty Mercedes-Benz OM611 CIDI-engine. SAE Trans. 2001. https://doi.org/10.4271/2001-01-1901.

    Article  Google Scholar 

  13. Giechaskiel B, Maricq M, Ntziachristos L, Dardiotis C, Wang X, Axmann H, Bergmann A, Schindler W. Review of motor vehicle particulate emissions sampling and measurement: From smoke and filter mass to particle number. J  Aerosol Sci. 2014. https://doi.org/10.1016/j.jaerosci.2013.09.003.

    Article  Google Scholar 

  14. Tan P, Wang D. Effects of sulfur content and ash content in lubricating oil on the aggregate morphology and nanostructure of diesel particulate matter. Energy Fuels. 2018. https://doi.org/10.1021/acs.energyfuels.7b03017.

    Article  Google Scholar 

  15. Rudnick LR. Synthetics. Mineral oils, and bio-based lubricants: chemistry and technology. 3rd ed. Boca Raton: CRC Press; 2020.

  16. Koide R, Iwanami Y, Konishi S, Kimura N, Takahashi S, Kamata M, Baba T. Effect of basic nitrogen compounds on gas oil hydrodesulfurization and deposit formed on the catalyst. Fuel. 2015. https://doi.org/10.1016/j.fuel.2015.02.112.

    Article  Google Scholar 

  17. Adlakha J, Singh P, Ram SK, Kumar M, Singh MP, Singh D, Sahai V, Srivastava P. Optimization of conditions for deep desulfurization of heavy crude oil and hydrodesulfurized diesel by Gordonia sp. IITR100. Fuel. 2016. https://doi.org/10.1016/j.fuel.2016.07.021.

    Article  Google Scholar 

  18. Ren TJ, Zhang J, Hu YH, PanLi J, Liu MS, Zhao DS. Extractive desulfurization of fuel oil with metal-based ionic liquids. Chin Chem Lett. 2015. https://doi.org/10.1016/j.cclet.2015.05.023.

    Article  Google Scholar 

  19. Zheng M, Hu H, Ye Z, Huang Q, Chen X. Adsorption desulfurization performance and adsorption-diffusion study of B2O3 modified Ag-CeOx/TiO2-SiO2. j. Hazard Mater. 2019. https://doi.org/10.1016/j.jhazmat.2018.09.037.

    Article  Google Scholar 

  20. Singh D, Chopra A, Mahendra PK, Kagdiyal V, Saxena D. Sulfur compounds in the fuel range fractions from different crude oils. Pet Sci Technol. 2016. https://doi.org/10.1080/10916466.2016.1196218.

    Article  Google Scholar 

  21. Otsuki S, Nonaka T, Takashima N, Qian W, Ishihara A, Imai T, Kabe T. Oxidative desulfurization of light gas oil and vacuum gas oil by oxidation and solvent extraction. Energy Fuels. 2000. https://doi.org/10.1021/ef000096i.

    Article  Google Scholar 

  22. Macaud M, Milenkovic A, Schulz E, Lemaire M, Vrinat M. Hydrodesulfurization of alkyldibenzothiophenes: evidence of highly unreactive aromatic sulfur compounds. J Catalysis. 2000. https://doi.org/10.1006/jcat.2000.2897.

    Article  Google Scholar 

  23. Ma X, Sakanishi K, Mochida I. Three-stage deep hydrodesulfurization and decolorization of diesel fuel with CoMo and NiMo catalysts at relatively low pressure. Fuel. 1994. https://doi.org/10.1016/0016-2361(94)90148-1.

    Article  Google Scholar 

  24. Sobati MA, Dehkordi AM, Shahrokhi M. Extraction of oxidized sulfur-containing compounds of non-hydrotreated gas oil. Chem Eng Technol. 2010. https://doi.org/10.1002/ceat.200900622.

    Article  Google Scholar 

  25. Khodaei B, Rahimi M, Sobati MA, Shahhosseini SH, Jalali MR. Effect of operating pressure on the performance of ultrasound-assisted oxidative desulfurization (UAOD) using a horn type sonicator: Experimental investigation and CFD simulation. Chemical Engineering and Processing - Process Intensification. 2018; https://doi.org/10.1016/j.cep.2018.08.006.

  26. Dehkordi AM, Sobati MA, Nazem MA. An experimental investigation on the oxidative desulfurization of kerosene feedstock. Energy Sources A: Recovery Util Environ Eff. 2013. https://doi.org/10.1080/15567036.2010.509087.

  27. Campos-Martin JM, Capel-Sanchez MC, Perez-Presas P, Fierro JLG. Oxidative processes of desulfurization of liquid fuels. J Chem Technol Biotechnol. 2010. https://doi.org/10.1002/jctb.2371.

    Article  Google Scholar 

  28. Jalali MR, Sobati MA. Intensification of oxidative desulfurization of gas oil by ultrasound irradiation: Optimization using Box–Behnken design (BBD). Appl Therm Eng. 2017. https://doi.org/10.1016/j.applthermaleng.2016.10.015.

    Article  Google Scholar 

  29. Pouladi B, Fanaei MA, Baghmisheh G. Optimization of oxidative desulfurization of gas condensate via response surface methodology approach. J Clean Prod. 2019. https://doi.org/10.1016/j.jclepro.2018.10.283.

    Article  Google Scholar 

  30. Houda S, Lancelot C, Blanchard P, Poinel L, Lamonier C. Oxidative desulfurization of heavy oils with high sulfur content: a review. Catalysts. 2018. https://doi.org/10.3390/catal8090344.

    Article  Google Scholar 

  31. Farshi A, Shiralizadeh P. Sulfur reduction of heavy fuel oil by oxidative desulfurization (ODS) method. Pet Coal. 2015;57:1337–7027.

    Google Scholar 

  32. Otaibi AL, Liu D, Hou X, Song L, Li Q, Li M, Almigrin HO, Yan Z. Desulfurization of Saudi Arabian crudes by oxidation–extraction method. Appl Petrochem Res. 2015. https://doi.org/10.1007/s13203-015-0112-3.

    Article  Google Scholar 

  33. Imtiaz A, Waqas A, Muhammad I. Desulfurization of liquid fuels using air-assisted performic acid oxidation and emulsion catalyst. Chin J Catal. 2013. https://doi.org/10.1016/S1872-2067(12)60668-8.

    Article  Google Scholar 

  34. Al-Lal AM, Bolonio D, Llamas A, Lapuerta M, Canoira L. Desulfurization of pyrolysis fuels obtained from waste: Lube oils, tires and plastics. Fuel. 2015. https://doi.org/10.1016/j.fuel.2015.02.034.

    Article  Google Scholar 

  35. Myers RH, Montgomery DC, Anderson-Cook CM. Response surface methodology: process and product optimization using designed experiments. 4th ed. Hoboken: Wiley; 2016.

  36. Cherop PT, Kiambi SL, Musonge P. Modelling and optimisation of oxidative desulphurisation of tyre-derived oil via central composite design approach. Green Process Synth. 2019. https://doi.org/10.1515/gps-2019-0013.

    Article  Google Scholar 

  37. Rahimi M, Shahhosseini S, Movahedirad S. Hydrodynamic and mass transfer investigation of oxidative desulfurization of a model fuel using an ultrasound horn reactor. Ultrason Sonochem. 2019. https://doi.org/10.1016/j.ultsonch.2018.11.006.

    Article  Google Scholar 

  38. Filippis PD, Scarsella M, Verdone N. Oxidative desulfurization I: Peroxyformic acid oxidation of Benzothiophene and dibenzothiophene. Ind Eng Chem Res. 2010. https://doi.org/10.1021/ie9017622.

    Article  Google Scholar 

  39. Filippis PD, Scarsella M, Verdone N. Peroxyformic acid formation: a kinetic study. Ind Eng Chem Res. 2009. https://doi.org/10.1021/ie801163j.

    Article  Google Scholar 

  40. Khodaei B, Sobati MA, Shahhosseini S. Optimization of ultrasound-assisted oxidative desulfurization of high sulfur kerosene using response surface methodology (RSM). Clean Technol Environ Policy. 2016. https://doi.org/10.1007/s10098-016-1186-z.

    Article  Google Scholar 

  41. Montgomery DC, Runger GC. Applied statistics and probability for engineers. 5th ed. Hoboken: Wiley; 2010.

  42. Duarte FA, Mello PD, Bizzi CA, Nunes MAG, Moreira EM, Alencar MS, Motta HN, Dressler VL, Flores EMM. Sulfur removal from hydrotreated petroleum fractions using ultrasound-assisted oxidative desulfurization process. Fuel. 2011. https://doi.org/10.1016/j.fuel.2011.01.030.

    Article  Google Scholar 

  43. Karami E, Sobati MA, Khodaei B, Abdi K. An experimental investigation on the ultrasound-assisted oxidation of benzothiophene in model fuel: Application of response surface methodology. Appl Therm Eng. 2017. https://doi.org/10.1016/j.applthermaleng.2017.03.028.

    Article  Google Scholar 

  44. Charab AA, Movahedirad S, Norouzbeigi R. Thermal conductivity of Al2O3+TiO2/water nanofluid: Model development and experimental validation. Appl Thermal Eng. 2017. https://doi.org/10.1016/j.applthermaleng.2017.03.059.

    Article  Google Scholar 

  45. Tang Q, Lin S, Cheng Y, Liu S, Xiong JR. Ultrasound-assisted oxidative desulfurization of bunker-C oil using tert-butyl hydroperoxide. Ultrason Sonochem. 2013. https://doi.org/10.1016/j.ultsonch.2013.02.002.

    Article  Google Scholar 

  46. Vlachos N, Skopelitis Y, Psaroudaki M, Konstantinidou V, Chatzilazarou A, Tegou E. Applications of fourier transform-infrared spectroscopy to edible oils. Anal Chim Acta. 2006. https://doi.org/10.1016/j.aca.2006.05.034.

    Article  Google Scholar 

  47. Lewis RN, McElhaney RN, Pohle W, Mantsch HH. Components of the carbonyl stretching band in the infrared spectra of hydrated 1,2-diacylglycerolipid bilayers: a reevaluation. Biophys J. 1994. https://doi.org/10.1016/S0006-3495(94)80723-4.

    Article  Google Scholar 

  48. Stadler. Handbook of Infrared Spectra. 1st ed. Stadler Research Laboratories; 1978.

  49. Trivedi M, Branton A, Trivedi D, Nayak G. Chromatographic, spectroscopic, and thermal characterization of biofield energy treated N,N-Dimethylformamide. Am J Appl Chem. 2015. https://doi.org/10.11648/j.ajac.20150306.12.

    Article  Google Scholar 

  50. Salvatore JR, Verstuyft AW. Significance of tests for petroleum products. 9th ed. West Conshohocken: American Society for Testing and Materials; 2018.

  51. Eissa EA, Basta JS, Ibrahim V. The Oxidation Stability of Lubricating Oil. Pet Sci Technol. 2010. https://doi.org/10.1080/10916460903160800.

    Article  Google Scholar 

  52. Mani-Varnosfaderani A, Ehsani S, Yamini Y. Investigating the effects of chemical composition of motor oils on their viscosity indices using gas chromatography and chemometrics techniques. Pet Sci Technol. 2019. https://doi.org/10.1080/10916466.2018.1550508.

    Article  Google Scholar 

  53. Lakshminarayanan PA, Nayak NS. Critical component wear in heavy duty engines. 1st ed. Hoboken: Wiley; 2011.

  54. Noh K, Shin J, Lee JH. Change of hydrocarbon structure type in lube Hydroprocessing and correlation model for viscosity index. Ind Eng Chem Res. 2017. https://doi.org/10.1021/acs.iecr.7b00967.

    Article  Google Scholar 

  55. El-Naggar AY, El-Adly RA, Altalhi TA, Alhadhrami A, Modather F. Ebiad MA. Salem A. Oxidation stability of lubricating base oils. Pet Sci Technol. 2018. https://doi.org/10.1080/10916466.2017.1403450.

  56. Harika E, Helene M, Bouyer J, Fillon M. Impact of lubricant contamination with water on hydrodynamic thrust bearing performance. 2010; https://doi.org/10.1051/meca/2011120.

  57. Sadeghbeigi R. CHAPTER 2 - FCC Feed Characterization, in: Sadeghbeigi R, editor. Houston: Gulf Professional Publishing;2000. pp. 40–83.

    Google Scholar 

  58. Sano T, Komatsubara H, Wada H, Kurosawa O, Itou M, Matsui S, Takahashi M, Fu K, Shirahama S, Sugiura I, Taguchi M, Konishi S. Lubricant base oil, lubricant composition for internal combustion engine and lubricant composition for driving force transmitting device. European. Pat. 2006: EP1845151A1.

Download references

Acknowledgements

The authors acknowledged the following support: Iran National Science Foundation (INSF) (grant for project no. 96012691). The authors would like to thank the INSF for financially supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Amin Sobati.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mortezaee, A., Sobati, M.A., Movahedirad, S. et al. An experimental investigation on the oxidative desulfurization of a mineral lubricant base oil. J Environ Health Sci Engineer 19, 1951–1968 (2021). https://doi.org/10.1007/s40201-021-00747-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40201-021-00747-1

Keywords

Navigation