Skip to main content
Log in

Investigation of arsenic removal from aqueous solution through selective sorption and nanofiber-based filters

Journal of Environmental Health Science and Engineering Aims and scope Submit manuscript

Abstract

Background

This research paper focuses on removing of arsenic from contaminated water via a nanofibrous polymeric microfiltration membrane, applied in prospective combination with an inorganic sorbent based on iron oxide hydroxide FeO(OH).

Materials and methods

Nanofibrous materials were prepared by electrospinning from polyurethane selected by an adsorption test. The chemical composition (FTIR), morphology (SEM, porometry) and hydrophilicity (contact angle) of the prepared nanostructured material were characterized. The process of eliminating arsenic from the contaminated water was monitored by atomic absorption spectroscopy (AAS). The adsorption efficiency of the nanofibrous material and the combination with FeO(OH) was determined, the level of arsenic anchorage on the adsorption filter was assessed by a rinsing test and the selectivity of adsorption in arsenic contaminated mineral water was examined.

Results

It was confirmed that the hydrophilic aromatic polyurethane of ester type PU918 is capable of capturing arsenic by complexation on nitrogen in its polymer chains. The maximum As removal efficiency was around 62 %. Arsenic was tightly anchored to the polymeric adsorbent. The adsorption process was sufficiently selective. Furthermore, it was found that the addition of even a small amount of FeO(OH) (0.5 g) to the nanofiber filter would increase the efficiency of As removal by 30 %.

Conclusions

The presented results showed that an adsorption filter based on a polyurethane nanostructured membrane added with an inorganic adsorbent FeO(OH) is a suitable way for the elimination of arsenic from water. However, it is necessary to ensure perfect contact between the surface of the nanostructure and the filtered medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. Kim MJ, Nriagu J. Oxidation of arsenite in groundwater using ozone and oxygen. Sci Total Environ. 2000. https://doi.org/10.1016/S0048-9697(99)00470-2.

    Article  Google Scholar 

  2. Lackovi JA, Nikolaidis NP, Dobbs G. Inorganic arsenic removal by zero-valent iron. Environ Eng Sci. 2000. https://doi.org/10.1089/ees.2000.17.29.

    Article  Google Scholar 

  3. Arsenic, metals, fibres, and dusts. In: IARC monographs on the evaluation of carcinogenic risks to humans volume 100 C. Lyon; 2009. ISBN 978-92-832-0135-9.

  4. Ferguson JF, Gavis J. A review of arsenic cycle in natural waters. Water Res. 1972. https://doi.org/10.1016/0043-1354(72)90052-8.

    Article  Google Scholar 

  5. Patterson JW. Arsenic. Industrial wastewater treatment technology. 2nd ed. Boston: Butterworth Publishers; 1985. pp. 11–22.

    Google Scholar 

  6. Edwards M. Chemistry of arsenic: Removal during coagulation and Fe-Mn oxidation. J Am Water Works Assoc. 1994. https://doi.org/10.1002/j.1551-8833.1994.tb06247.x.

    Article  Google Scholar 

  7. Matschullat J. Arsenic in the geosphere - a review. Sci Total Environ. 2000. https://doi.org/10.1016/S0048-9697(99)00524-0.

    Article  Google Scholar 

  8. Hu H. Exposure to metals, Primary care. 2000; https://doi.org/10.1016/S0095-4543(05)70185-8.

  9. Basu A, Mahata J, Gupta S, Giri AK. Genetic toxicology of a paradoxical human carcinogen, arsenic: a review. Mutat Res. 2001. https://doi.org/10.1016/S1383-5742(01)00056-4.

    Article  Google Scholar 

  10. Nicomel NR, Leus K, Folens K, Van Der Voort P, Du Laing G. Technologies for arsenic removal from water: current status and future perspectives. Int J Environ Res Public Health. 2016. https://doi.org/10.3390/ijerph13010062.

    Article  Google Scholar 

  11. Jain C, Ali I. Arsenic. Occurrence, toxicity and speciation techniques. Water Res. 2000. https://doi.org/10.1016/S0043-1354(00)00182-2.

    Article  Google Scholar 

  12. Gebel TW. Genotoxicity of arsenical compounds. Int J Hyg Environ Health. 2001. https://doi.org/10.1078/S1438-4639(04)70036-X.

    Article  Google Scholar 

  13. Singh R, Singh S, Parihar P, Singh VP, Prasad SM. Arsenic contamination consequences and remediation techniques: A review. Ecotoxicol Environ Saf. 2015. https://doi.org/10.1016/j.ecoenv.2014.10.009.

    Article  Google Scholar 

  14. World Health Organization. Arsenic in drinking-water. In: Background document for development of WHO guidelines for drinking-water quality, 24 p., 2011. Ref. no. WHO/SDE/WSH/03.04/75/rev1. https://www.who.int/water_sanitation_health/publications/arsenic/en/. Accessed 16 Sep 2019.

  15. Vyhláška 252/2004 Sb., kterou se stanoví hygienické požadavky na pitnou a teplou vodu a četnost a rozsah kontroly pitné vody; 27 Apr 2018. https://www.zakonyprolidi.cz/cs/2004-252. Accessed 16 Sep 2019.

  16. Směrnice Rady EU. č. 98/83/ES o jakosti vody určené k lidské spotřebě; 3 Nov 1998 https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CONSLEG:1998L0083:20031120:CS:PDF. Accessed 16 Sep 2019.

  17. Berg M, Tran HC, Nguyen TC, Pham HV, Schertenleib R, Giger W. Arsenic contamination of ground water and drinking water in Vietnam: a human health threat. Environ Sci Technol. 2001. https://doi.org/10.1021/es010027y.

    Article  Google Scholar 

  18. Ryu J, Gao S, Dahlgren RA, Zierenberg RA. Arsenic distribution, speciation and solubility in shallow ground water of Owens Dry Lake, California. Geochim Cosmochim Acta. 2002. https://doi.org/10.1016/S0016-7037(02)00897-9.

    Article  Google Scholar 

  19. Anawar HM, Akai J, Mostofa KMG, Safiullah S, Tareq SM. Arsenic poisoning in groundwater: health risk and geochemical sources in Bangladesh. Environ Int. 2002. https://doi.org/10.1016/S0160-4120(01)00116-7.

    Article  Google Scholar 

  20. Mandal BK, Chowdhury TR, Samata G, Mukherjee DP, Chanda CR, Saha KC, Chankraborti D. Impact of safe water for drinking and cooking on five arsenic-affected families for 2 years in West Bengal, India. Sci Total Environ. 1998. https://doi.org/10.1016/S0048-9697(98)00220-4.

    Article  Google Scholar 

  21. Smedley PL, Kinniburgh DG. A review of the source, behaviour and distribution of arsenic in natural waters. Appl Geochem. 2002. https://doi.org/10.1016/S0883-2927(02)00018-5.

    Article  Google Scholar 

  22. Smedley PL, Zhang M, Zhang G, Luo Z. Mobilisation of arsenic and other trace elements in fluvia lacustrine aquifers of the Huh hot Basin, Inner Mongolia. Appl Geochem. 2003. https://doi.org/10.1016/S0883-2927(03)00062-3.

    Article  Google Scholar 

  23. Harisha RS, Hosamani KM, Keri RS, Nataraj SK, Aminabhavi TM. Arsenic removal from drinking water using thin film composite nanofiltration membrane. Desalination. 2010. https://doi.org/10.1016/j.desal.2009.10.022.

    Article  Google Scholar 

  24. US Environmental Protection Agency. National primary drinking water regulations, Washington DC, USA, 2018. https://www.epa.gov/ground-water-and-drinking-water/national-primary-drinking-water-regulations. Accessed 16 Sep 2019.

  25. Han B, Runnells T, Zimbron J, Wickramasinghe R. Arsenic removal from drinking water microfiltration by flocculation and microfiltration. Desalination. 2002. https://doi.org/10.1016/S0011-9164(02)00425-3.

    Article  Google Scholar 

  26. Shih M. An overview of arsenic removal by pressure-driven membrane processes. Desalination. 2005. https://doi.org/10.1016/j.desal.2004.07.031.

    Article  Google Scholar 

  27. Van der Bruggen B, Vandecasteele C, Gestel T, Doyen W, Leysen R. A review of pressure-driven membrane processes in wastewater treatment and drinking water production. Environ Prog. 2003. https://doi.org/10.1002/ep.670220116.

    Article  Google Scholar 

  28. Skala M. Odstranění zvýšeného množství arsenu v pitné vodě obce Vepřová a Malá Losenice. https://www.soutezprovodu.cz/ProVodu/files/bd/bd7437b1-18c6-4c50-8588-75b84bdb4811.pdf. Accessed 16 Sep 2019.

  29. Tang S, Lo I. Magnetic nanoparticles: Essential factors for sustainable environmental applications. Water Res. 2013. https://doi.org/10.1016/j.watres.2013.02.039.

    Article  Google Scholar 

  30. Yao S, Liu Z, Shi Z. Arsenic removal from aqueous solutions by adsorption onto iron oxide/activated carbon magnetic composite. J Environ Health Sci Eng. 2014. https://doi.org/10.1186/2052-336X-12-58.

    Article  Google Scholar 

  31. Biela R, Kučera T, Vosáhlo J. Odstraňování arsenu z vody sorpčními materiály. In: TBZ info. 2012. https://voda.tzb-info.cz/vlastnosti-a-zdroje-vody/8360-odstranovani-arsenu-z-vody-sorpcnimi-materialy. Accessed 16 Sep 2019.

  32. Katsoyiannis IA, Zouboulis AI. Removal of arsenic from contaminated water sources by sorption onto iron-oxide-coated polymeric materials. Water Res. 2002. https://doi.org/10.1016/S0043-1354(02)00236-1.

    Article  Google Scholar 

  33. Foudazi R, Zowada R, Malakia A. Arsenic removal from water by porous polymers. WRRI Technical Completion Report No. 2016;374:36 p.

  34. Thirunavukkarasu OS, Viraraghavan T, Subramanian KS. Arsenic removal from drinking water using iron oxide-coated sand. Water Air Soil Pollut. 2003. https://doi.org/10.1023/A:1022073721853.

    Article  Google Scholar 

  35. Nguyen CM, Bang S, Cho J, Kyoung-Woong K. Performance and mechanism of arsenic removal from water by a nanofiltration membrane. Desalination. 2009. https://doi.org/10.1016/j.desal.2008.04.047.

    Article  Google Scholar 

  36. Figoli A, Cassano A, Criscuoli A, Mozumder MSI, Uddin MT, Islam MA, Drioli E. Influence of operating parameters on the arsenic removal by nanofiltration. Water Res. 2010. https://doi.org/10.1016/j.watres.2009.09.007.

    Article  Google Scholar 

  37. Waypa J, Elimelech M, Hering J. Arsenic removal by RO and NF membranes. J Am Water Works Assoc. 1997. https://doi.org/10.1002/j.1551-8833.1997.tb08309.x.

    Article  Google Scholar 

  38. Sato Y, Kang M, Kamei T, Magara Y. Performance of nanofiltration for arsenic removal. Water Res. 2002. https://doi.org/10.1016/S0043-1354(02)00037-4.

    Article  Google Scholar 

  39. Uddin M, Mozumder M, Figoli A, Islam M, Drioli E. Arsenic removal by conventional and membrane technology: An overview. Indian J Chem Technol. 2007;14:441–50.

    CAS  Google Scholar 

  40. Brandhuber P, Amy G. Alternative methods for membrane filtration of arsenic from drinking water. Desalination. 1998. https://doi.org/10.1016/S0011-9164(98)00061-7.

    Article  Google Scholar 

  41. Rezaee R, Nasseri S, Mahvi AH, Nabizadeh R, Mousavi SA, Rashidi A, Nazmara S. Fabrication and characterization of a polysulfone-graphene oxide nanocomposite membrane for arsenate rejection from water. J Environ Health Sci Eng. 2015. https://doi.org/10.1186/s40201-015-0217-8.

    Article  Google Scholar 

  42. Kimmer D, Slobodian P, Petras D, Zatloukal M, Olejnik R, Saha P. Polyurethane/multiwalled carbon nanotube nanowebs prepared by an electrospinning process. J Appl Polym Sci. 2009. https://doi.org/10.1002/app.29238.

    Article  Google Scholar 

  43. Kimmer D, Vincent I, Lovecká L, Kazda T, Giurg A, Skorvan O. Some aspects of application nanostructured materials in air filtration, water filtration and electrical engineering. In proceedings n Novel Trends in Rheology VII, AIP Conference Proceedings 2010; https://doi.org/10.1063/1.4983003.

  44. Složení. In: Ida (minerální voda). Wikipedie – otevřená encyklopedie. 2011. https://cs.wikipedia.org/wiki/Ida_(miner%C3%A1ln%C3%AD_voda)/. Accessed 16 Sep 2019.

  45. Raul PK, Devi RR, Umlong IM, Thakur AJ, Banerjee S, Veer V. Iron oxide hydroxide nano flower assisted removal of arsenic from water. Mater Res Bull. 2014. https://doi.org/10.1016/j.materresbull.2013.09.015.

    Article  Google Scholar 

  46. Verma P, Agarwal A, Singh VK. Arsenic removal from water through adsorption-a review. Recent Res Sci Technol. 2014;6:219–26.

    Google Scholar 

  47. Ilavský J, Barloková D. Nové sorpčné materiály BAYOXIDE E33, GEH, CFH12 v úprave vody. In: Sborník conference Pitná voda 2008. s. 195–200. W&ET Team, Č. Budějovice 2008; ISBN 978-80-254-2034-8.

  48. Mahmud HNME, Huq AKO, Yahya R. Polymer-based adsorbent for heavy metals removal from aqueous solution. IOP Conf Ser: Mater Sci Eng. 2017. https://doi.org/10.1088/1757-899X/206/1/012100.

    Article  Google Scholar 

  49. Qiu H, Lv L, Pan B, Zhang Q, Zhang W, Zhang Q. Critical review in adsorption kinetic models. J Zhejiang Univ Sci. 2009. https://doi.org/10.1631/jzus.A0820524.

    Article  Google Scholar 

  50. Hussein FB, Abu-Zahra NH. Adsorption kinetics and evaluation study of iron oxide nanoparticles impregnated in polyurethane matrix for water filtration application. J Miner Mater Char Eng. 2017. https://doi.org/10.4236/jmmce.2017.55025.

    Article  Google Scholar 

  51. Günay A, Arslankaya E, Tosun I. Lead removal from aqueous solution by natural and pretreated clinoptilolite: Adsorption equilibrium and kinetics. J Hazard Mater. 2007. https://doi.org/10.1016/j.jhazmat.2006.12.034.

    Article  Google Scholar 

  52. Radfard M, Yunesian M, Nabizadeh R, Biglari H, Nazmara S, Hadi M, Yousefi N, Yousefi M, Abbasnia A, Mahvi AH. Drinking water quality and arsenic health risk assessment in Sistan and Baluchestan, Southeastern Province, Iran, Hum. ecol. risk assess. 2019; https://doi.org/10.1080/10807039.2018.1458210.

  53. Arsenic Removal. In: GEH 102. 2012. https://www.lenntech.com/Data-sheets/GEH_102_Arsenic_en-L.pdf. Accessed 16 Sep 2019.

Download references

Acknowledgements

This research was supported by the Technological Agency of the Czech Republic – project no. TJ02000629, and the Ministry of Education. Youth and Sports of the Czech Republic – programme NPU I (LO1504) and programme DKRVO (RP/CPS/2020/002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Domincova Bergerova.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Domincova Bergerova, E., Kimmer, D., Kovarova, M. et al. Investigation of arsenic removal from aqueous solution through selective sorption and nanofiber-based filters. J Environ Health Sci Engineer 19, 1347–1360 (2021). https://doi.org/10.1007/s40201-021-00691-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40201-021-00691-0

Keywords

Navigation