Skip to main content
Log in

Novel catalytic degradation of Diazinon with ozonation/mg-Al layered double hydroxides: optimization, modeling, and dispersive liquid–liquid microextraction

  • Research article
  • Published:
Journal of Environmental Health Science and Engineering Aims and scope Submit manuscript

Abstract

Purpose

In this study MgAl- layered double hydroxides (MgAl-LDH) nanoparticles were prepared by a simple and fast co-precipitation method and used as a catalyst in the ozonation process to degrade diazinon from aqueous solutions.

Methods

The structure of the synthesized MgAl-LDH was investigated by X-ray diffraction pattern (XRD) and field emission scanning electron microscope-energy dispersive spectroscopy (FESEM-EDX). The response surface methodology (RSM) was used to investigate the effects of different parameters including of reaction time, initial diazinon concentration, pH, and LDH dose on the removal of diazinon by MgAl-LDH catalytic ozonation process. Central Composite Design (CCD) was employed for the optimization and modeling of the process. Dispersive liquid–liquid microextraction (DLLME) method was used to extract diazinon from aqueous samples. The GC-Mass analysis was performed to determine intermediate compounds during diazinon degradation reactions. To evaluate the process performance, TOC and COD removal were measured under optimum conditions.

Results

The highest removal efficiency of 92% was observed in optimum conditions as follow; initial diazinon concentration: 120 mg/L, pH: 8.25, LDH dose: 750 mg/L, and reaction time: 70 min. The quadratic model was obtained with a good fit. The removal of COD and TOC were 80% and 74%, respectively.

Conclusion

This process can be suggested and used in the treatment of various industrial wastewaters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Wang C, Shih Y. Degradation and detoxification of diazinon by sono-Fenton and sono-Fenton-like processes. Sep Purif Technol. 2015;140:6–12.

    Article  CAS  Google Scholar 

  2. Shayeghi M, Dehghani MH, Mahvi AH, Azam K. Application of acoustical processor reactors for degradation of diazinon from surface water. Iran J Arthropod Borne Dis. 2010;4(2):11.

    CAS  Google Scholar 

  3. Sakkas VA, Dimou A, Pitarakis K, Mantis G, Albanis T. TiO2 photocatalyzed degradation of diazinon in an aqueous medium. Environ Chem Lett. 2005;3(2):57–61.

    Article  CAS  Google Scholar 

  4. Pirsaheb M, Dargahi A, Hazrati S, Fazlzadehdavil M. Removal of diazinon and 2, 4-dichlorophenoxyacetic acid (2, 4-D) from aqueous solutions by granular-activated carbon. Desalin Water Treat. 2014;52(22–24):4350–5.

    Article  CAS  Google Scholar 

  5. Hosseini G, Maleki A, Daraei H, Faez E, Shahamat YD. Electrochemical process for Diazinon removal from aqueous media: Design of Experiments, optimization, and DLLME-GC-FID method for Diazinon determination. Arab J Sci Eng. 2015;40(11):3041–6.

    Article  CAS  Google Scholar 

  6. Sethunathan N, Pathak MD. Increased biological hydrolysis of diazinon after repeated application in rice paddies. J Agric Food Chem. 1972;20(3):586–9.

    Article  CAS  Google Scholar 

  7. Malakootian M, Gharaghani MA, Dehdarirad A, Khatami M, Ahmadian M, Heidari MR, et al. ZnO nanoparticles immobilized on the surface of stones to study the removal efficiency of 4-nitroaniline by the hybrid advanced oxidation process (UV/ZnO/O<inf>3</inf>). J Mol Struct. 2019;1176:766–76.

    Article  CAS  Google Scholar 

  8. Dehghani MH, Nikfar E, Zarei A, Esfahani NM. The effects of US/H2O2 processes on bisphenol-a toxicity in aqueous solutions using Daphnia magna. Desalin Water Treat. 2017;68:183–9.

    Article  CAS  Google Scholar 

  9. Kermani M, Bahrami Asl F, Farzadkia M, Esrafili A, Salahshour Arian S, Khazaei M, et al. Heterogeneous catalytic ozonation by Nano-MgO is better than sole ozonation for metronidazole degradation, toxicity reduction, and biodegradability improvement. Desalin Water Treat. 2016;57(35):16435–44.

    Article  CAS  Google Scholar 

  10. Asgari G, Samiee F, Ahmadian M, Poormohammadi A. Catalytic ozonation of pentachlorophenol in aqueous solutions using granular activated carbon. Appl Water Sci. 2017;7(1):393–400.

    Article  CAS  Google Scholar 

  11. Asgari G, Faradmal J, Nasab HZ, Ehsani H. Catalytic ozonation of industrial textile wastewater using modified C-doped MgO eggshell membrane powder. Adv Powder Technol. 2019;30(7):1297–311.

    Article  CAS  Google Scholar 

  12. Elmoubarki R, Mahjoubi FZ, Elhalil A, Tounsadi H, Abdennouri M, Sadiq M, et al. Ni/Fe and mg/Fe layered double hydroxides and their calcined derivatives: preparation, characterization and application on textile dyes removal. J Mater Res Technol. 2017;6(3):271–83.

    Article  CAS  Google Scholar 

  13. Kamani H, Nasseri S, Khoobi M, Nodehi RN, Mahvi AH. Sonocatalytic degradation of humic acid by N-doped TiO2 nano-particle in aqueous solution. J Environ Heal Sci Eng. 2016;14(1):1–9.

    Google Scholar 

  14. Bazrafshan E, Balarak D, Panahi AH, Kamani H, Mahvi AH. Fluoride removal from aqueous solutions by cupricoxide nanoparticles. Fluoride. 2016;49(3):233.

    CAS  Google Scholar 

  15. Malakootian M, Nasiri A, Asadipour A, Faraji M, Kargar E. A facile and green method for synthesis of ZnFe2O4@CMC as a new magnetic nanophotocatalyst for ciprofloxacin removal from aqueous media. MethodsX. 2019;6:1575–80. 4.

  16. Tamaddon F, Nasiri A, Yazdanpanah G. Photocatalytic degradation of ciprofloxacin using CuFe2O4@methyl cellulose based magnetic nanobiocomposite. MethodsX. 2020;7:74–81.

    Article  Google Scholar 

  17. Malakootian M, Khatami M, Mahdizadeh H, Nasiri A, Amiri GM. A study on the photocatalytic degradation of p-Nitroaniline on glass plates by Thermo-immobilized ZnO nanoparticle. Inorg Nano-Metal Chem. 2020;50(3):124–35.

    Article  CAS  Google Scholar 

  18. Bakr AA, Sayed NA, Salama TM, Ali IO, Gayed RRA, Negm NA. Kinetics and thermodynamics of Mn (II) removal from aqueous solutions onto mg-Zn-Al LDH/montmorillonite nanocomposite. Egypt J Pet. 2018;27(4):1215–20.

    Article  Google Scholar 

  19. Wang Q, Gao Y, Luo J, Zhong Z, Borgna A, Guo Z, et al. Synthesis of nano-sized spherical Mg3 Al–CO3 layered double hydroxide as a high-temperature CO2 adsorbent. RSC Adv. 2013;3(10):3414–20.

    Article  CAS  Google Scholar 

  20. Mrózek O, Ecorchard P, Vomáčka P, Ederer J, Smržová D, Slušná MŠ, et al. Mg-Al-La LDH-MnFe2O4 hybrid material for facile removal of anionic dyes from aqueous solutions. Appl Clay Sci. 2019;169:1–9.

    Article  Google Scholar 

  21. Aghaeinejad-Meybodi A, Ebadi A, Shafiei S, Khataee A, Kiadehi AD. Degradation of fluoxetine using catalytic ozonation in aqueous media in the presence of nano-γ-alumina catalyst: experimental, modeling and optimization study. Sep Purif Technol. 2019;211:551–63.

    Article  CAS  Google Scholar 

  22. Guimarães CO, França AB, Samanamud GRL, Baston EP, Lofrano RCZ, Loures CCA, et al. Optimization of treating phenol from wastewater through the TiO2-catalyzed advanced oxidation process and response surface methodology. Environ Monit Assess. 2019;191(6):1–14.

    Google Scholar 

  23. Kamani H, Safari GH, Asgari G, Ashrafi SD. Data on modeling of enzymatic elimination of direct red 81 using response surface methodology. Data Br. 2018;18:80–6.

    Article  Google Scholar 

  24. Iqbal MA, Fedel M. Effect of synthesis conditions on the controlled growth of MgAl–LDH corrosion resistance film: structure and corrosion resistance properties. Coatings. 2019;9(1):30.

    Article  Google Scholar 

  25. Birdsall CM, Jenkins AC, Spadinger E. Iodometric determination of ozone. Anal Chem. 1952;24(4):662–4.

    Article  CAS  Google Scholar 

  26. Al-Musawi TJ, Kamani H, Bazrafshan E, Panahi AH, Silva MF, Abi G. Optimization the effects of physicochemical parameters on the degradation of cephalexin in sono-Fenton reactor by using box-Behnken response surface methodology. Catal Letters. 2019;149(5):1186–96.

    Article  CAS  Google Scholar 

  27. Malakootian M, Nasiri A, Mahdizadeh H. Preparation of CoFe2O4/activated carbon@ chitosan as a new magnetic nanobiocomposite for adsorption of ciprofloxacin in aqueous solutions. Water Sci Technol. 2018;78(10):2158–70.

    Article  CAS  Google Scholar 

  28. Saidi AHM, Emara AAA. The recent developments in dispersive liquid− liquid microextraction for preconcentration and determination of inorganic analytes. J Saudi Chem Soc. 2014;18:745.

    Article  Google Scholar 

  29. Farajzadeh MA, Seyedi SE, Shalamzari MS, Bamorowat M. Dispersive liquid–liquid microextraction using extraction solvent lighter than water. J Sep Sci. 2009;32(18):3191–200.

    Article  CAS  Google Scholar 

  30. Federation WE, Association APH. Standard methods for the examination of water and wastewater. Washington DC, USA.: Am Public Heal Assoc; 2005.

    Google Scholar 

  31. Sepehr MN, Al-Musawi TJ, Ghahramani E, Kazemian H, Zarrabi M. Adsorption performance of magnesium/aluminum layered double hydroxide nanoparticles for metronidazole from aqueous solution. Arab J Chem. 2017;10(5):611–23.

    Article  CAS  Google Scholar 

  32. Shan R, Yan L, Yang Y, Yang K, Yu S, Yu H, et al. Highly efficient removal of three red dyes by adsorption onto mg–Al-layered double hydroxide. J Ind Eng Chem. 2015;21:561–8.

    Article  CAS  Google Scholar 

  33. Ai L, Zhang C, Meng L. Adsorption of methyl orange from aqueous solution on hydrothermal synthesized mg–Al layered double hydroxide. J Chem Eng Data. 2011;56(11):4217–25.

    Article  CAS  Google Scholar 

  34. Yang K, Yan L, Yang Y, Yu S, Shan R, Yu H, et al. Adsorptive removal of phosphate by mg–Al and Zn–Al layered double hydroxides: kinetics, isotherms and mechanisms. Sep Purif Technol. 2014;124:36–42.

    Article  CAS  Google Scholar 

  35. Akhtar J, Amin NS, Junjie W. Optimization studies for catalytic ozonation of cephalexin antibiotic in a batch reactor. J Water Supply Res Technol. 2012;61(7):413–26.

    Article  CAS  Google Scholar 

  36. Kasprzyk-Hordern B, Ziółek M, Nawrocki J. Catalytic ozonation and methods of enhancing molecular ozone reactions in water treatment. Appl Catal B Environ. 2003;46(4):639–69.

    Article  CAS  Google Scholar 

  37. Farzadkia M, Dadban Shahamat Y, Nasseri S, Mahvi AH, Gholami M, Shahryari A. Catalytic ozonation of phenolic wastewater: identification and toxicity of intermediates. J Eng. 2014;2014:1–10.

    Article  Google Scholar 

  38. Kamani H, Bazrafshan E, Ashrafi SD, Sancholi F. Efficiency of sono-nano-catalytic process of TiO2 nano-particle in removal of erythromycin and metronidazole from aqueous solution. J Maz Univ Med Sci. 2017;27(151):140–54.

    Google Scholar 

  39. Mehrjouei M, Müller S, Möller D. A review on photocatalytic ozonation used for the treatment of water and wastewater. Chem Eng J. 2015;263:209–19.

    Article  CAS  Google Scholar 

  40. Chen H, Wang J. Catalytic ozonation of sulfamethoxazole over Fe3O4/Co3O4 composites. Chemosphere. 2019;234:14–24.

    Article  CAS  Google Scholar 

  41. Elhalil A, Qourzal S, Mahjoubi FZ, Elmoubarki R, Farnane M, Tounsadi H, et al. Defluoridation of groundwater by calcined mg/Al layered double hydroxide. Emerg Contam. 2016;2(1):42–8.

    Article  Google Scholar 

  42. Rey A, Quinones DH, Álvarez PM, Beltrán FJ, Plucinski PK. Simulated solar-light assisted photocatalytic ozonation of metoprolol over titania-coated magnetic activated carbon. Appl Catal B Environ. 2012;111:246–53.

    Article  Google Scholar 

  43. Huang Y, Luo M, Xu Z, Zhang D, Li L. Catalytic ozonation of organic contaminants in petrochemical wastewater with iron-nickel foam as catalyst. Sep Purif Technol. 2019;211:269–78.

    Article  CAS  Google Scholar 

  44. Alinejad A, Akbari H, Ghaderpoori M, Jeihooni AK, Adibzadeh A. Catalytic ozonation process using a MgO nano-catalyst to degrade methotrexate from aqueous solutions and cytotoxicity studies in human lung epithelial cells (A549) after treatment. RSC Adv. 2019;9(15):8204–14.

    Article  CAS  Google Scholar 

  45. Ahmadifard T, Heydari R, Tarrahi MJ, Khorramabadi GS. Photocatalytic Degradation of Diazinon in Aqueous Solutions Using Immobilized MgO Nanoparticles on Concrete. Int J Chem React Eng. 2019;17(9).

  46. Nakaoka Y, Katsumata H, Kaneco S, Suzuki T, Ohta K. Photocatalytic degradation of diazinon in aqueous solution by platinized TiO2. Desalin Water Treat. 2010;13(1–3):427–36.

    Article  CAS  Google Scholar 

  47. Basfar AA, Mohamed KA, Al-Abduly AJ, Al-Kuraiji TS, Al-Shahrani AA. Degradation of diazinon contaminated waters by ionizing radiation. Radiat Phys Chem. 2007;76(8–9):1474–9.

    Article  CAS  Google Scholar 

  48. Mahdizadeh H, Malakootian M. Optimization of ciprofloxacin removal from aqueous solutions by a novel semi-fluid Fe/charcoal micro-electrolysis reactor using response surface methodology. Process Saf Environ Prot. 2019;123:299–308.

    Article  CAS  Google Scholar 

  49. Revathi V, Karthik K, Mahdizadeh H. Antibacterial activity and physico-chemical properties of metal-organic single crystal: zinc (Tris) thiourea chloride. Chem Data Collect. 2019 Dec;1:24.

    Google Scholar 

Download references

Acknowledgments

This research was a part of Ph.D. thesis entitled “study on the nitro-benzenamine and diazynon degradation by hybrid process of ozonation/LDH and SBMBBR biological reactor from aqueous solutions.”; which was conducted at the Environmental Health Engineering Research Center and was sponsored by the Vice-Chancellor for Research and Technology of Kerman University of Medical Sciences. The authors take this opportunity to express their gratitude for the support and assistance extended by the facilitators during the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hakimeh Mahdizadeh.

Ethics declarations

Conflict of interest

I, as the main corresponding author of this study declare that there is no known conflict and competing financial interests or personal relationships that can influence the work reported in this paper.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOC 281 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malakootian, M., Shahamat, Y.D. & Mahdizadeh, H. Novel catalytic degradation of Diazinon with ozonation/mg-Al layered double hydroxides: optimization, modeling, and dispersive liquid–liquid microextraction. J Environ Health Sci Engineer 19, 1299–1311 (2021). https://doi.org/10.1007/s40201-021-00687-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40201-021-00687-w

Keywords

Navigation