Polycyclic aromatic hydrocarbons in PM1, PM2.5 and PM10 atmospheric particles: identification, sources, temporal and spatial variations

Abstract

This study reports temporal and spatial variations of 16 different species of particulate polycyclic aromatic hydrocarbons (particle-bonded PAHs) in the indoor and outdoor environments of three sampling sites in Bandar Mahshahr city, Iran. A low-volume air sampler was employed to collect size-segregated particulate matter during winter (October to December 2015), and summer (July to September 2016). The results showed that the annual concentrations of indoor and outdoor PM10 and PM2.5 were much higher than the related World Health Organization guidelines. The concentration of total particle-bonded PAHs (TPAHs) was higher in winter than in summer and a significant difference between the two sampling seasons was observed. The indoor and outdoor carcinogenic PAHs to TPAHs concentrations ratios in the sampling sites in summer and winter were as follow: for PM10 40.15–42.51%, PM2.5 41.30–42.97%, and PM1 43.07–44.36%, respectively; furthermore, the smaller the particle size, the higher the percentage of carcinogenic PAHs. 2 ring PAHs had a very small contribution to the total PAHs (about 1%), whereas PAHs with 3-to-4 rings had much larger contributions, ranging from 71.65% to 75.17%. The results demonstrated that as PM size decreased, the proportion of 5-to-6-ring PAHs to the total PAHs increased. Since 5-to-6- ring PAHs are considered to be more toxic, hence more attention should be paid to fine particles. The diagnostic ratios of indoor and outdoor of three sampling sites in both seasons suggested that petrogenic sources, as well as combustion of petroleum and other fossil fuels were the main PAHs sources.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Dehghan A, Khanjani N, Bahrampour A, Goudarzi G, Yunesian M. The relation between air pollution and respiratory deaths in Tehran, Iran-using generalized additive models. BMC pulmonary medicine. 2018; 18(1), 1-9.‏

  2. 2.

    Goudarzi G, Shirmardi M, Naimabadi A, Ghadiri A, Sajedifar J. Chemical and organic characteristics of PM2. 5 particles and their in-vitro cytotoxic effects on lung cells: The Middle East dust storms in Ahvaz, Iran. Science of The Total Environment. 2019; 655, 434-445.‏

  3. 3.

    Li N, Han W, Wei X, Shen M, Sun S. Chemical characteristics and human health assessment of PM1 during the Chinese spring festival in Changchun, Northeast China. Atmospheric Pollut Res. 2019;10(6):1823–31.

    CAS  Article  Google Scholar 

  4. 4.

    Farsani MH, Shirmardi M, Alavi N, Maleki H, Sorooshian A, Babaei A, et al. Evaluation of the relationship between PM10 concentrations and heavy metals during normal and dusty days in Ahvaz, Iran. Aeolian Research. 2018; 33, 12-22.‏

  5. 5.

    Marzouni MB, Alizadeh T, Banafsheh MR, Khorshiddoust AM, Ghozikali MG, Akbaripoor S, et al. A comparison of health impacts assessment for PM10 during two successive years in the ambient air of Kermanshah, Iran. Atmospheric Pollut Res. 2016;7(5):768–74.

    Article  Google Scholar 

  6. 6.

    Marzouni MB, Moradi M, Zarasvandi A, Akbaripoor S, Hassanvand MS, Neisi A, et al. Health benefits of PM10 reduction in Iran. Int J Biometeorol. 2017;61:1389–401.

    Article  Google Scholar 

  7. 7.

    Chen C, Zhao B. Review of relationship between indoor and outdoor particles: I/O ratio, infiltration factor and penetration factor. Atmos Environ. 2011;45:275–88.

    CAS  Article  Google Scholar 

  8. 8.

    Dominici F, Peng RD, Bell ML, Pham L, McDermott A, Zeger SL, et al. Fine particulate air pollution and hospital admission for cardiovascular and respiratory diseases. Jama. 2006;295:1127–34.

    CAS  Article  Google Scholar 

  9. 9.

    Pope CA, Dockery DW. Health effects of fine particulate air pollution: lines that connect. J Air Waste Manage Assoc. 2006;56:709–42.

    CAS  Article  Google Scholar 

  10. 10.

    Watson JG. Visibility: science and regulation. J Air Waste Manage Assoc. 2002;52:628–713.

    Article  Google Scholar 

  11. 11.

    Harrison RM, Smith D, Luhana L. Source apportionment of atmospheric polycyclic aromatic hydrocarbons collected from an urban location in Birmingham, UK. Environ Sci Technol. 1996;30:825–32.

    CAS  Article  Google Scholar 

  12. 12.

    Nation Research Council, (NRC), 1998. Nation research council. Research priorities for airborne particulate matter: I. Immediate Priorities and a Long-Range Research Portfolio.

  13. 13.

    Buczyńska AJ, Krata A, Van Grieken R, Brown A, Polezer G, De Wael K, et al. Composition of PM2.5 and PM1 on high and low pollution event days and its relation to indoor air quality in a home for the elderly. Sci Total Environ. 2014;490:134–43.

    Article  CAS  Google Scholar 

  14. 14.

    Kanakidou M, Seinfeld J, Pandis S, Barnes I, Dentener F, Facchini M, et al. Organic aerosol and global climate modelling: a review. Atmos Chem Phys. 2005;5:1053–123.

    CAS  Article  Google Scholar 

  15. 15.

    Turpin BJ, Saxena P, Andrews E. Measuring and simulating particulate organics in the atmosphere: problems and prospects. Atmos Environ. 2000;34:2983–3013.

    CAS  Article  Google Scholar 

  16. 16.

    Ré-Poppi N, Santiago-Silva M. Polycyclic aromatic hydrocarbons and other selected organic compounds in ambient air of Campo Grande City, Brazil. Atmos Environ. 2005;39:2839–50.

    Article  CAS  Google Scholar 

  17. 17.

    Ravindra K, Sokhi R, Van Grieken R. Atmospheric polycyclic aromatic hydrocarbons: source attribution, emission factors and regulation. Atmos Environ. 2008a;42:2895–921.

    CAS  Article  Google Scholar 

  18. 18.

    Ma W-L, Sun D-Z, Shen W-G, Yang M, Qi H, Liu L-Y, et al. Atmospheric concentrations, sources and gas-particle partitioning of PAHs in Beijing after the 29th Olympic games. Environ Pollut. 2011;159:1794–801.

    CAS  Article  Google Scholar 

  19. 19.

    Yan C, Zheng M, Yang Q, Zhang Q, Qiu X, Zhang Y, et al. Commuter exposure to particulate matter and particle-bound PAHs in three transportation modes in Beijing, China. Environ Pollut. 2015;204:199–206.

    CAS  Article  Google Scholar 

  20. 20.

    Tobiszewski M, Namieśnik J. PAH diagnostic ratios for the identification of pollution emission sources. Environ Pollut. 2012;162:110–9.

    CAS  Article  Google Scholar 

  21. 21.

    Mahler BJ, Metre PCV, Crane JL, Watts AW, Scoggins M, Williams ES. Coaltar-based pavement sealcoat and PAHs: implications for the environment, human health, and stormwater management. Environ Sci Technol. 2012;46(6):3039–45.

    CAS  Article  Google Scholar 

  22. 22.

    US EPA, 1984, Guidelines for carcinogen risk assessment, EPA/630/P-03/001F, US Environmental Protection Agency, Washington, D.C., United States of America, 2005, http://www.epa.gov/raf/publications/pdfs/CANCER GUIDELINES FINAL 3-25-05.Pdf (accessed in may 2016).

  23. 23.

    IARC, 2002. Some traditional herbal medicines, some mycotoxins, naphthalene and styrene. World Health Organization.

  24. 24.

    IARC. Some non-heterocyclic polycyclic aromatic hydrocarbons and some related exposures. IARC Monogr Eval Carcinog Risks Hum. 2010;92:1.

    Google Scholar 

  25. 25.

    Bergman, Å., Heindel, J., Jobling, S., Kidd, K., Zoeller, R., 2013. State of the science of endocrine disrupting chemicals, 2012. United Nations environment Programme and the World Health Organization. Unep. Org/pdf/9789 241505031_eng. Pdf.

  26. 26.

    ATSDR, 1995. Toxicological profile for polycyclic aromatic hydrocarbons, Agency for Toxic Substances and Disease Registry, Atlanta, 1995, http://www.atsdr.cdc.gov/toxprofiles/tp69.html (accessed 16.02.16).

  27. 27.

    Hassanvand MS, Naddafi K, Faridi S, Nabizadeh R, Sowlat MH, Momeniha F, et al. Characterization of PAHs and metals in indoor/outdoor PM10/PM2. 5/PM1 in a retirement home and a school dormitory. Sci Total Environ. 2015;527:100–10.

    Article  CAS  Google Scholar 

  28. 28.

    Pfeiffer R. Sampling for PM10 and PM2.5 particulates. Micrometeorology in Agricultural Systems. 2005;47:227–45.

    Google Scholar 

  29. 29.

    NIOSH, 1994. Manual of analytical methods (NMAM): polynuclear aromatic hydrocarbons by GC. METHOD5515. National Institute for Occupational Safety and Health, Washington DC, pp. 2–7.

  30. 30.

    Pandey SK, Kim KH, Brown RJ. A review of techniques for the determination of polycyclic aromatic hydrocarbons in air. TrAC Trends Anal Chem. 2011;30(11):1716–39.

    CAS  Article  Google Scholar 

  31. 31.

    Singh D, Gadi R, Mandal TK. Characterization of particulate-bound polycyclic aromatic hydrocarbons and trace metals composition of urban air in Delhi, India. Atmos Environ. 2011;45:7653–63.

    CAS  Article  Google Scholar 

  32. 32.

    US EPA, 1999, Compendium method TO- 13A – determination of polycyclic aromatic hydrocarbons (PAH) in ambient air using gas chromatography/mass spectrometry (CG/MS). Center for environmental research information.

  33. 33.

    Zhou J, Wang T, Zhang Y, Zhong N, Medeiros PM, Simoneit BR. Composition and sources of organic matter in atmospheric PM10 over a two year period in Beijing. China Atmos Res. 2009;93:849–61.

    CAS  Article  Google Scholar 

  34. 34.

    Nisbet IC, LaGoy PK. Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs). Regul Toxicol Pharmacol. 1992;16:290–300.

    CAS  Article  Google Scholar 

  35. 35.

    Durant JL, Lafleur AL, Busby WF, Donhoffner LL, Penman BW, Crespi CL. Mutagenicity of C 24 H 14 PAH in human cells expressing CYP1A1. Mutation Research/Genetic Toxicology and Environmental Mutagenesis. 1999;446:1–14.

    CAS  Article  Google Scholar 

  36. 36.

    Durant JL, Busby WF Jr, Lafleur AL, Penman BW, Crespi CL. Human cell mutagenicity of oxygenated, nitrated and unsubstituted polycyclic aromatic hydrocarbons associated with urban aerosols. Mutat Res Genet Toxicol. 1996;371(3–4):123–57.

    CAS  Article  Google Scholar 

  37. 37.

    Jung KH, Yan B, Chillrud SN, Perera FP, Whyatt R, Camann D, et al. Assessment of benzo (a) pyrene-equivalent carcinogenicity and mutagenicity of residential indoor versus outdoor polycyclic aromatic hydrocarbons exposing young children in New York City. Int. J. Environ. Res. Public Health. 2010;7:1889–900.

    CAS  Google Scholar 

  38. 38.

    WHO, , 2005. Air quality guidelines: global update 2005: particulate matter, ozone, nitrogen dioxide, and sulfur dioxide. World Health Organization.

  39. 39.

    Oliveira M, Slezakova K, Delerue-Matos C, Pereira MC, Morais S. Assessment of polycyclic aromatic hydrocarbons in indoor and outdoor air of preschool environments (3–5 years old children). Environ Pollut. 2016;208:382–94.

    CAS  Article  Google Scholar 

  40. 40.

    Chen Y-C, Chiang H-C, Hsu C-Y, Yang T-T, Lin T-Y, Chen M-J, et al. Ambient PM 2.5-bound polycyclic aromatic hydrocarbons (PAHs) in Changhua County, Central Taiwan: seasonal variation, source apportionment and cancer risk assessment. Environ Pollut. 2016;218:372–82.

    CAS  Article  Google Scholar 

  41. 41.

    Tolis EI, Saraga DE, Lytra MK, Papathanasiou AC, Bougaidis PN, Prekas-Patronakis OE, et al. Concentration and chemical composition of PM2. 5 for a one-year period at Thessaloniki, Greece: a comparison between city and port area. Atmos Environ. 2015;113:197–207.

    CAS  Article  Google Scholar 

  42. 42.

    Callen MS, Iturmendi A, Lopez JM. Source apportionment of atmospheric PM2.5-bound polycyclic aromatic hydrocarbons by a PMF receptor model. Assessment of potential risk for human health. Environ. Pollut. 2014;195:167e177.

    Article  CAS  Google Scholar 

  43. 43.

    Kume K, Ohura T, Noda T, Amagai T, Fusaya M. Seasonal and spatial trends of suspended-particle associated polycyclic aromatic hydrocarbons in urban Shizuoka. Jpn J Hazard Mater. 2007;144:513e521.

    Google Scholar 

  44. 44.

    Bourotte C, Forti M-C, Taniguchi S, Bícego MC, Lotufo PA. A wintertime study of PAHs in fine and coarse aerosols in São Paulo city, Brazil. Atmos Environ. 2005;39:3799–811.

    CAS  Article  Google Scholar 

  45. 45.

    Masiol M, Hofer A, Squizzato S, Piazza R, Rampazzo G, Pavoni B. Carcinogenic and mutagenic risk associated to airborne particle-phase polycyclic aromatic hydrocarbons: a source apportionment. Atmos Environ. 2012;60:375e382.

    Article  CAS  Google Scholar 

  46. 46.

    Akyüz M, Çabuk H. Meteorological variations of PM2.5/PM10 concentrations and particle-associated polycyclic aromatic hydrocarbons in the atmospheric environment of Zonguldak. Turk. J. Hazard. Mater. 2009;170:13e21.

    Google Scholar 

  47. 47.

    Bandowe BAM, Meusel H, Huang RJ, Ho K, Cao J, Hoffmann T, et al. PM2.5-bound oxygenated PAHs, nitro-PAHs and parent-PAHs from the atmosphere of a Chinese megacity: seasonal variation, sources and cancer risk assessment. Sci. Total Environ. 2014;473e474:77e87.

    Google Scholar 

  48. 48.

    Liu J, Man R, Ma S, Li J, Wu Q, Peng J. Atmospheric levels and health risk of polycyclic aromatic hydrocarbons (PAHs) bound to PM2.5 in Guangzhou, China. Mar. Pollut. Bull. 2015;100:134e143.

    Google Scholar 

  49. 49.

    Teixeira E, Mattiuzi C, Agudelo-Castaneda D, de Oliveira Garcia K, Wiegand F. Polycyclic aromatic hydrocarbons study in atmospheric fine and coarse particles using diagnostic ratios and receptor model in urban/industrial region. Environ. Monit. Assess. 2013;185:9587e9602.

    Google Scholar 

  50. 50.

    Krumal K, Mikuska P, Vecera Z. Polycyclic aromatic hydrocarbons and hopanes in PM1 aerosols in urban areas. Atmos Environ. 2013;67:27e37.

    Article  CAS  Google Scholar 

  51. 51.

    Ravindra K, Wauters E, Van Grieken R. Variation in particulate PAHs levels and their relation with the transboundary movement of the air masses. Sci Total Environ. 2008b;396:100–10.

    CAS  Article  Google Scholar 

  52. 52.

    Lai IC, Lee CL, Zeng KY, Huang HC. Seasonal variation of atmospheric polycyclic aromatic hydrocarbons along the Kaohsiung coast 2011;92(8):2029–37.

  53. 53.

    Mohanraj R, Dhanakumar S, Solaraj G 2012. Polycyclic aromatic hydrocarbons bound to PM 2.5 in urban Coimbatore, India with emphasis on source apportionment. The scientific world Journal, 2012.

  54. 54.

    Li J, Zhang G, Li X, Qi S, Liu G, Peng X. Source seasonality of polycyclic aromatic hydrocarbons (PAHs) in a subtropical city, Guangzhou, South China. Sci Total Environ. 2006;355:145–55.

    CAS  Article  Google Scholar 

  55. 55.

    Tsapakis M, Stephanou EG. Occurrence of gaseous and particulate polycyclic aromatic hydrocarbons in the urban atmosphere: study of sources and ambient temperature effect on the gas/particle concentration and distribution. Environ Pollut. 2005;133:147–56.

    CAS  Article  Google Scholar 

  56. 56.

    Eiguren-Fernandez A, Miguel AH, Froines JR, Thurairatnam S, Avol EL. Seasonal and spatial variation of polycyclic aromatic hydrocarbons in vapor-phase and PM2. 5 in Southern California urban and rural communities. Aerosol Sci Technol. 2004;38:447–55.

    CAS  Article  Google Scholar 

  57. 57.

    del Rosario Sienra M, Rosazza NG, Préndez M. Polycyclic aromatic hydrocarbons and their molecular diagnostic ratios in urban atmospheric respirable particulate matter. Atmos Res. 2005;75:267–81.

    Article  CAS  Google Scholar 

  58. 58.

    Hong H, Yin H, Wang X, Ye C. Seasonal variation of PM 10-bound PAHs in the atmosphere of Xiamen, China. Atmos Res. 2007;85:429–41.

    CAS  Article  Google Scholar 

  59. 59.

    Kim K-H, Jahan SA, Kabir E, Brown RJ. A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects. Environ Int. 2013;60:71–80.

    CAS  Article  Google Scholar 

  60. 60.

    Possanzini M, Di Palo V, Gigliucci P, Scianò MCT, Cecinato A. Determination of phase-distributed PAH in Rome ambient air by denuder/GC-MS method. Atmos Environ. 2004;38:1727–34.

    CAS  Article  Google Scholar 

  61. 61.

    Kong S, Ding X, Bai Z, Han B, Chen L, Shi J, et al. A seasonal study of polycyclic aromatic hydrocarbons in PM 2.5 and PM 2.5–10 in five typical cities of Liaoning Province, China. J Hazard Mater. 2010;183:70–80.

    CAS  Article  Google Scholar 

  62. 62.

    Sanderson EG, Farant J-P. Atmospheric size distribution of PAHs: evidence of a high-volume sampling artifact. Environ Sci Technol. 2005;39:7631–7.

    CAS  Article  Google Scholar 

  63. 63.

    Wang X, Cheng H, Xu X, Zhuang G, Zhao C. A wintertime study of polycyclic aromatic hydrocarbons in PM 2.5 and PM 2.5–10 in Beijing: assessment of energy structure conversion. J Hazard Mater. 2008;157:47–56.

    CAS  Article  Google Scholar 

  64. 64.

    Yunker MB, Macdonald RW, Vingarzan R, Mitchell RH, Goyette D, Sylvestre S. PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition. Org Geochem. 2002;33:489–515.

    CAS  Article  Google Scholar 

  65. 65.

    Manoli E, Kouras A, Samara C. Profile analysis of ambient and source emitted particle-bound polycyclic aromatic hydrocarbons from three sites in northern Greece. Chemosphere. 2004;56:867–78.

    CAS  Article  Google Scholar 

  66. 66.

    Katsoyiannis A, Terzi E, Cai Q-Y. On the use of PAH molecular diagnostic ratios in sewage sludge for the understanding of the PAH sources. Is this use appropriate? Chemosphere. 2007;69:1337–9.

    CAS  Article  Google Scholar 

  67. 67.

    Yang D, Qi S, Zhang Y, Xing X, Liu H, Qu C, Liu J, Li F. Levels, sources and potential risks of polycyclic aromatic hydrocarbons (PAHs) in multimedia environment along the Jinjiang River mainstream to Quanzhou Bay. China Mar Pollut Bull. 2013;76(1–2):298–306.

    CAS  Article  Google Scholar 

  68. 68.

    Jiang Y, Hu X, Yves UJ, Zhan H, Wu Y. Status, source and health risk assessment of polycyclic aromatic hydrocarbons in street dust of an industrial city. NW China Ecotoxicol Environ Saf. 2014;106:11–8.

    CAS  Article  Google Scholar 

  69. 69.

    Khalili NR, Scheff PA, Holsen TM. PAH source fingerprints for coke ovens, diesel and, gasoline engines, highway tunnels, and wood combustion emissions. Atmos Environ. 1995;29:533–42.

    CAS  Article  Google Scholar 

  70. 70.

    Guo H, Lee S, Ho K, Wang X, Zou S. Particle-associated polycyclic aromatic hydrocarbons in urban air of Hong Kong. Atmos Environ. 2003;37:5307–17.

    CAS  Article  Google Scholar 

  71. 71.

    Mirante F, Alves C, Pio C, Pindado O, Perez R, Revuelta MA, et al. Organic composition of size segregated atmospheric particulate matter, during summer and winter sampling campaigns at representative sites in Madrid, Spain. Atmos Res. 2013;132:345–61.

    Article  CAS  Google Scholar 

  72. 72.

    Krugly E, Martuzevicius D, Sidaraviciute R, Ciuzas D, Prasauskas T, Kauneliene V, et al. Characterization of particulate and vapor phase polycyclic aromatic hydrocarbons in indoor and outdoor air of primary schools. Atmos Environ. 2014;82:298–306.

    CAS  Article  Google Scholar 

  73. 73.

    Wu X, Lam JC, Xia C, Kang H, Xie Z, Lam PK. Atmospheric concentrations of DDTs and chlordanes measured from Shanghai, China to the Arctic Ocean during the third China Arctic research expedition in 2008. Atmos Environ. 2011;45:3750–7.

    CAS  Article  Google Scholar 

  74. 74.

    Wang R, Liu G, Zhang J. Variations of emission characterization of PAHs emitted from different utility boilers of coal-fired power plants and risk assessment related to atmospheric PAHs. Sci Total Environ. 2015;538:180–90.

    CAS  Article  Google Scholar 

  75. 75.

    Galarneau E. Source specificity and atmospheric processing of airborne PAHs: implications for source apportionment. Atmos Environ. 2008;42(35):8139–49.

    CAS  Article  Google Scholar 

  76. 76.

    Perraudin E, Budzinski H, Villenave E. Kinetic study of the reactions of ozone with polycyclic aromatic hydrocarbons adsorbed on atmospheric model particles. J Atmos Chem. 2007;56(1):57–82.

    CAS  Article  Google Scholar 

  77. 77.

    WHO, 1987. Air quality guidelines for Europe. WHO Regional Publications, European Series No. 23Regional Office for Europe, Copenhagen.

Download references

Acknowledgments

This paper is issued from APRD-9501 as a project number in Air Pollution and Respiratory Diseases research center and also M.Sc. thesis of Faezeh Jahedi. Financial support of this research was provided by Ahvaz Jundishapur University of Medical Sciences (AJUMS).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gholamreza Goudarzi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jahedi, F., Dehdari Rad, H., Goudarzi, G. et al. Polycyclic aromatic hydrocarbons in PM1, PM2.5 and PM10 atmospheric particles: identification, sources, temporal and spatial variations. J Environ Health Sci Engineer (2021). https://doi.org/10.1007/s40201-021-00652-7

Download citation

Keywords

  • Atmospheric particulate matters
  • Polycyclic aromatic hydrocarbons
  • Spatial variation
  • Temporal variation
  • Bandar Mahshahr