Skip to main content
Log in

Influence of monomers involved in the fabrication of a novel PES based nanofiltration thin-film composite membrane and its performance in the treatment of common effluent (CETP) textile industrial wastewater

  • Research article
  • Published:
Journal of Environmental Health Science and Engineering Aims and scope Submit manuscript

Abstract

Objective

In this article, monomers (tannic acid (TA) and m- phenylenediamine (MPD)) were used in the fabrication of a novel PES based thin-film composite nanofiltration (TFC-NF) membrane for the treatment of a common effluent treatment plant (CETP) of textile industrial wastewater.

Membrane synthesis

PES support sheets and TFC layers were fabricated via non-solvent induced phase inversion and in-situ interfacial polymerization (IP) process. The ultra-thin active layer was synthesized via the IP process with monomers such as tannic acid (TA) and m- phenylenediamine (MPD). T and M series membranes correspond to (PES/x wt% TA, x = 2, 4, 6) as T1, T2, T3 -TA and (PES/x wt% MPD, x = 2, 4, 6) as M1, M2, M3–MPD respectively. M0 corresponds to PES which is the virgin membrane.

Results

The chemical structure, surface morphology, surface roughness and surface properties were explored using fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM) and contact angle, respectively. The filtration performance of the thin-film composite nanofiltration (TFC-NF) membranes was investigated by various properties like pure water flux, salt rejection, porosity, mean pore radius and antifouling analysis.

Conclusion

T1-TA membrane showed better water permeability, high salt rejection and better industrial effluent rejection with 94.4% of TDS that are suitable for industrial reuse and agricultural irrigation. Moreover, for T1-TA membrane, the water flux, porosity, mean pore radius, salt rejection, surface roughness and contact angle of 43.5lm− 2h− 1, 47.1%, 16.7nm, 72.7%, 11.7nm and 41.48°was achieved respectively that was found to be higher than that of all the other fabricated membranes. Further, the rejection efficiency rate of textile effluent characteristics such as pH, turbidity, TDS, alkalinity, total hardness, BOD and COD were also achieved with maximum deduction in the T1-TA TFC-NF membrane compared to the M0-Virgin PES membrane. From the results, it can be confirmed that the T1-TA membrane significantly reduced the alkalinity, total hardness, BOD and COD rejections of 78%, 77.3%, 58.5% and 67.5% respectively, present in the effluent. Water flux recovery ratio (FRR) was improved from 74.6% for M0-Virgin PES membrane to 94.8% for T1-TA membrane. The modified TFC-NF membranes especially T1-TA, had better anti-fouling property and excellent hydrophilicity than the unmodified M0-Virgin PES membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Karami P, Khorshidi B, McGregor M, Peichel JT, Soares JB, Sadrzadeh M. Thermally stable thin film composite polymeric membranes for water treatment: A review. J Clean Prod 2020;250:119,447. https://doi.org/10.1016/j.jclepro.2019.119447http://www.sciencedirect.com/science/article/pii/S0959652619343173.

    Article  CAS  Google Scholar 

  2. Park SJ, Choi W, Nam SE, Hong S, Lee JS, Lee JH. Fabrication of polyamide thin film composite reverse osmosis membranes via support-free interfacial polymerization. J Membr Sci 2017;526:52–59. https://doi.org/10.1016/j.memsci.2016.12.027http://www.sciencedirect.com/science/article/pii/S0376738816307074.

    Article  CAS  Google Scholar 

  3. Wu M, Yuan J, Wu H, Su Y, Yang H, You X, Zhang R, He X, Khan NA, Kasher R, Jiang Z. Ultrathin nanofiltration membrane with polydopamine-covalent organic framework interlayer for enhanced permeability and structural stability. J Membr Sci 2019;576:131–41. https://doi.org/10.1016/j.memsci.2019.01.040http://www.sciencedirect.com/science/article/pii/S0376738818328096.

    Article  CAS  Google Scholar 

  4. Li Y, Su Y, Li J, Zhao X, Zhang R, Fan X, Zhu J, Ma Y, Liu Y, Jiang Z. Preparation of thin film composite nanofiltration membrane with improved structural stability through the mediation of polydopamine. J Membr Sci 2015;476:10–19. https://doi.org/10.1016/j.memsci.2014.11.011http://www.sciencedirect.com/science/article/pii/S0376738814008473.

    Article  CAS  Google Scholar 

  5. Li Q, Liao Z, Fang X, Wang D, Xie J, Sun X, Wang L, Li J. Tannic acid-polyethyleneimine crosslinked loose nanofiltration membrane for dye/salt mixture separation. J Membr Sci 2019;584:324–32. https://doi.org/10.1016/j.memsci.2019.05.002http://www.sciencedirect.com/science/article/pii/S0376738819303242.

    Article  CAS  Google Scholar 

  6. Santra B, Ramrakhiani L, Kar S, Ghosh S, Majumdar S. 2020. Ceramic membrane-based ultrafiltration combined with adsorption by waste derived biochar for textile effluent treatment and management of spent biochar. J Environ Health Sci Eng. https://doi.org/10.1007/s40201-020-00520-w.

  7. Xu GR, Wang J, Li CJ. Strategies for improving the performance of the polyamide thin film composite (pa-tfc) reverse osmosis (ro) membranes: Surface modifications and nanoparticles incorporations. Desalination 2013;328:83–100. https://doi.org/10.1016/j.desal.2013.08.022http://www.sciencedirect.com/science/article/pii/S0011916413003986.

    Article  CAS  Google Scholar 

  8. Yu C, Li H, Zhang X, Lü Z, Yu S, Liu M, Gao C. Polyamide thin-film composite membrane fabricated through interfacial polymerization coupled with surface amidation for improved reverse osmosis performance. J Membr Sci 2018;566:87–95. https://doi.org/10.1016/j.memsci.2018.09.012http://www.sciencedirect.com/science/article/pii/S037673881831994X.

    Article  CAS  Google Scholar 

  9. Kadhom M, Deng B. Synthesis of high-performance thin film composite (tfc) membranes by controlling the preparation conditions: Technical notes. J Water Process Eng 2019;30:100542. https://doi.org/10.1016/j.jwpe.2017.12.011http://www.sciencedirect.com/science/article/pii/S2214714417307729. SI: Sust Water Processing.

    Article  Google Scholar 

  10. Zhang Y, Su Y, Peng J, Zhao X, Liu J, Zhao J, Jiang Z. Composite nanofiltration membranes prepared by interfacial polymerization with natural material tannic acid and trimesoyl chloride. J Membr Sci 2013; 429: 235–42. https://doi.org/10.1016/j.memsci.2012.11.059http://www.sciencedirect.com/science/article/pii/S0376738812008873.

    Article  CAS  Google Scholar 

  11. Fan L, Ma Y, Su Y, Zhang R, Liu Y, Zhang Q, Jiang Z. Green coating by coordination of tannic acid and iron ions for antioxidant nanofiltration membranes. RSC Adv 2015;5: 107777–84. https://doi.org/10.1039/C5RA23490E.

    Article  CAS  Google Scholar 

  12. Tsehaye MT, Wang J, Zhu J, Velizarov S, der Bruggen BV. Development and characterization of polyethersulfone-based nanofiltration membrane with stability to hydrogen peroxide. J Membr Sci 2018;550:462–9. https://doi.org/10.1016/j.memsci.2018.01.022http://www.sciencedirect.com/science/article/pii/S0376738817336037.

    Article  CAS  Google Scholar 

  13. Wang H, Li L, Zhang X, Zhang S. Polyamide thin-film composite membranes prepared from a novel triamine 3,5-diamino-n-(4-aminophenyl)-benzamide monomer and m-phenylenediamine. J Membr Sci 2010;353(1):78–84. https://doi.org/10.1016/j.memsci.2010.02.033http://www.sciencedirect.com/science/article/pii/S0376738810001419.

    Article  CAS  Google Scholar 

  14. Syed Ibrahim GP, Isloor AM, Bavarian M, Nejati S. Integration of zwitterionic polymer nanoparticles in interfacial polymerization for ion separation. ACS Appl Polym Mater 2020;2(4):1508–17. https://doi.org/10.1021/acsapm.9b01192.

    Article  CAS  Google Scholar 

  15. Wen P, Chen Y, Hu X, Cheng B, Liu D, Zhang Y, Nair S. Polyamide thin film composite nanofiltration membrane modified with acyl chlorided graphene oxide. J Membr Sci 2017;535:208–20. https://doi.org/10.1016/j.memsci.2017.04.043http://www.sciencedirect.com/science/article/pii/S0376738816324413.

    Article  CAS  Google Scholar 

  16. Esfandian F, Peyravi M, Ghoreyshi AA, Jahanshahi M, Rad AS. Fabrication of tfc nanofiltration membranes via co-solvent assisted interfacial polymerization for lactose recovery. Arab J Chem 2019;12(8):5325–38. https://doi.org/10.1016/j.arabjc.2017.01.004http://www.sciencedirect.com/science/article/pii/S1878535217300072.

    Article  CAS  Google Scholar 

  17. Manraquez LP, Neelakanda P, Peinemann K. Tannin-based thin-film composite membranes for solvent nanofiltration. J Membr Sci 2017;541:137–42. https://doi.org/10.1016/j.memsci.2017.06.078http://www.sciencedirect.com/science/article/pii/S0376738817307640.

    Article  Google Scholar 

  18. Rahimpour A, Jahanshahi M, Peyravi M. 2014. Development of pilot scale nanofiltration system for yeast industry wastewater treatment. J Environ Health Sci Eng, vol. 12 (55). https://doi.org/10.1186/2052-336X-12-55.

  19. Mondal S, Rana U, Das P, Malik S. Network of polyaniline nanotubes for wastewater treatment and oil/water separation. ACS Appl Polym Mater 2019;1(7):1624–33. https://doi.org/10.1021/acsapm.9b00199.

    Article  CAS  Google Scholar 

  20. Gohil JM, Ray P. A review on semi-aromatic polyamide tfc membranes prepared by interfacial polymerization: Potential for water treatment and desalination. Sep Purif Technol 2017;181:159–82. https://doi.org/10.1016/j.seppur.2017.03.020http://www.sciencedirect.com/science/article/pii/S1383586617301855.

    Article  CAS  Google Scholar 

  21. Chen S, Xie Y, Xiao T, Zhao W, Li J, Zhao C. Tannic acid-inspiration and post-crosslinking of zwitterionic polymer as a universal approach towards antifouling surface. Chem Eng J 2018;337:122–32. https://doi.org/10.1016/j.cej.2017.12.057http://www.sciencedirect.com/science/article/pii/S1385894717321782.

    Article  CAS  Google Scholar 

  22. Ji C, Xue S, Tang YJ, Ma XH, Xu ZL. Polyamide membranes with net-like nanostructures induced by different charged mofs for elevated nanofiltration. ACS Appl Polym Mater 2020;2(2):585–93. https://doi.org/10.1021/acsapm.9b00973.

    Article  CAS  Google Scholar 

  23. Li J, Wu H, Cao L, He X, Shi B, Li Y, Xu M, Jiang Z. Enhanced proton conductivity of sulfonated polysulfone membranes under low humidity via the incorporation of multifunctional graphene oxide. ACS Appl Nano Mater 2019;2(8):4734–43. https://doi.org/10.1021/acsanm.9b00446.

    Article  CAS  Google Scholar 

  24. Han R. Formation and characterization of (melamine-tmc) based thin film composite nf membranes for improved thermal and chlorine resistances. J Membr Sci 2013;425-426:176–81. https://doi.org/10.1016/j.memsci.2012.08.017http://www.sciencedirect.com/science/article/pii/S0376738812006163.

    Article  CAS  Google Scholar 

  25. Wang S, Shi K, Tripathi A, Chakraborty U, Parsons GN, Khan SA. 2020. Designing intrinsically microporous polymer (pim-1) microfibers with tunable morphology and porosity via controlling solvent/nonsolvent/polymer interactions. ACS Appl Polym Mater 0 (0), null. https://doi.org/10.1021/acsapm.0c00386.

  26. Zhang R, He M, Gao D, Liu Y, Wu M, Jiao Z, Su Y, Jiang Z. Polyphenol-assisted in-situ assembly for antifouling thin-film composite nanofiltration membranes. J Membr Sci 2018;566:258–67. https://doi.org/10.1016/j.memsci.2018.09.010http://www.sciencedirect.com/science/article/pii/S0376738818314315.

    Article  CAS  Google Scholar 

  27. Zhang Z, Kang G, Yu H, Jin Y, Cao Y. Fabrication of a highly permeable composite nanofiltration membrane via interfacial polymerization by adding a novel acyl chloride monomer with an anhydride group. J Membr Sci 2019;570-571:403–9. https://doi.org/10.1016/j.memsci.2018.10.061http://www.sciencedirect.com/science/article/pii/S0376738818323871.

    Article  CAS  Google Scholar 

  28. Virga E, de Grooth J, žvab K, de Vos WM. Stable polyelectrolyte multilayer-based hollow fiber nanofiltration membranes for produced water treatment. ACS Appl Polym Mater 2019;1(8):2230–9. https://doi.org/10.1021/acsapm.9b00503.

    Article  CAS  Google Scholar 

  29. Dodda JM, Remia T, Tomaa M, Novotna P. Effect of alternation of polyamide selective layers in the formation and performance of thin-film composite membranes. Desalination Water Treat 2016;57(19): 8720–9. https://doi.org/10.1080/19443994.2015.1026279.

    Article  CAS  Google Scholar 

  30. Ding W, Li Y, Bao M, Zhang J, Zhang C, Lu J. Highly permeable and stable forward osmosis (fo) membrane based on the incorporation of al2o3 nanoparticles into both substrate and polyamide active layer. RSC Adv 2017;7:40311–20. https://doi.org/10.1039/C7RA04046F.

    Article  CAS  Google Scholar 

  31. Xue J, Jiao Z, Bi R, Zhang R, You X, Wang F, Zhou L, Su Y, Jiang Z. Chlorine-resistant polyester thin film composite nanofiltration membranes prepared with β-cyclodextrin. J Membr Sci 2019;584:282–9. https://doi.org/10.1016/j.memsci.2019.04.077http://www.sciencedirect.com/science/article/pii/S0376738819302789.

    Article  CAS  Google Scholar 

  32. An QF, Sun WD, Zhao Q, Ji YL, Gao CJ. Study on a novel nanofiltration membrane prepared by interfacial polymerization with zwitterionic amine monomers. J Membr Sci 2013;431:171–9. https://doi.org/10.1016/j.memsci.2012.12.043http://www.sciencedirect.com/science/article/pii/S0376738813000082.

    Article  CAS  Google Scholar 

  33. Alenazi NA, Hussein MA, Alamry KA, Asiri AM. Modified polyether-sulfone membrane: a mini review. Des Monomers Polym 2017;20(1):532–46. https://doi.org/10.1080/15685551.2017.1398208 PMID: 29491825.

    Article  CAS  Google Scholar 

  34. Zhang Y, Su Y, Peng J, Zhao X, Liu J, Zhao J, Jiang Z. Composite nanofiltration membranes prepared by interfacial polymerization with natural material tannic acid and trimesoyl chloride. J Membr Sci 2013; 429: 235–42. https://doi.org/10.1016/j.memsci.2012.11.059http://www.sciencedirect.com/science/article/pii/S0376738812008873.

    Article  CAS  Google Scholar 

  35. quez LPM, Neelakanda P, Peinemann KV. Tannin-based thin-film composite membranes for solvent nanofiltration. J Membr Sci 2017;541:137–42. https://doi.org/10.1016/j.memsci.2017.06.078http://www.sciencedirect.com/science/article/pii/S0376738817307640.

    Article  Google Scholar 

  36. Wei J, Liu X, Qiu C, Wang R, Tang CY. Influence of monomer concentrations on the performance of polyamide-based thin film composite forward osmosis membranes. J Membr Sci 2011;381(1):110–7. https://doi.org/10.1016/j.memsci.2011.07.034http://www.sciencedirect.com/science/article/pii/S0376738811005461.

    Article  CAS  Google Scholar 

  37. Sharabati JAD, Guclu S, Erkoc-Ilter S, Koseoglu-Imer DY, Unal S, Menceloglu YZ, Ozturk I, Koyuncu I. Interfacially polymerized thin-film composite membranes: Impact of support layer pore size on active layer polymerization and seawater desalination performance. Sep Purif Technol 2019;212:438–48. https://doi.org/10.1016/j.seppur.2018.11.047http://www.sciencedirect.com/science/article/pii/S1383586618325164.

    Article  CAS  Google Scholar 

  38. Kumar SA, Srinivasan G, Govindaradjane S. Development of a new blended polyethersulfone membrane for dye removal from synthetic wastewater. Environ Nanotechnol Monit Manag 2019;12:100238. https://doi.org/10.1016/j.enmm.2019.100238http://www.sciencedirect.com/science/article/pii/S2215153219300169.

    Google Scholar 

  39. Karami P, Khorshidi B, Soares JBBP, Sadrzadeh M. Fabrication of highly permeable and thermally stable reverse osmosis thin film composite polyamide membranes. ACS Appl Mater Interfaces 2020;12(2): 2916–25. https://doi.org/10.1021/acsami.9b16875 PMID: 31841298.

    Article  CAS  Google Scholar 

  40. Seman MA, Khayet M, Hilal N. Nanofiltration thin-film composite polyester polyethersulfone-based membranes prepared by interfacial polymerization. J Membr Sci, 2010;348(1):109–16. https://doi.org/10.1016/j.memsci.2009.10.047http://www.sciencedirect.com/science/article/pii/S0376738809007893.

    Article  Google Scholar 

  41. Arribas P, a Payo MG, Khayet M, Gil L. Improved antifouling performance of polyester thin film nanofiber composite membranes prepared by interfacial polymerization. J Membr Sci 2020;598:117774. https://doi.org/10.1016/j.memsci.2019.117774http://www.sciencedirect.com/science/article/pii/S0376738819334556.

    Article  CAS  Google Scholar 

  42. Li Y, Su Y, Dong Y, Zhao X, Jiang Z, Zhang R, Zhao J. Separation performance of thin-film composite nanofiltration membrane through interfacial polymerization using different amine monomers. Desalination 2014;333(1):59–65. https://doi.org/10.1016/j.desal.2013.11.035http://www.sciencedirect.com/science/article/pii/S0011916413005602.

    Article  CAS  Google Scholar 

  43. Soroush A, Barzin J, Barikani M, Fathizadeh M. Interfacially polymerized polyamide thin film composite membranes: Preparation, characterization and performance evaluation. Desalination 2012;287:310–6. https://doi.org/10.1016/j.desal.2011.07.048http://www.sciencedirect.com/science/article/pii/S001191641100662X. Special Issue in honour of Professor Takeshi Matsuura on his 75th Birthday.

    Article  CAS  Google Scholar 

  44. Choi O, Ingole PG, Lee HK. Preparation and characterization of thin film composite membranefor the removal of water vapor from the flue gas at bench scale. Sep Purif Technol 2019;211:401–7. https://doi.org/10.1016/j.seppur.2018.09.086, http://www.sciencedirect.com/science/article/pii/S1383586618324262.

    Article  CAS  Google Scholar 

  45. Li T, Xiao Y, Guo D, Shen L, Li R, Jiao Y, Xu Y, Lin H. In-situ coating TiO2 surface by plant-inspired tannic acid for fabrication of thin film nanocomposite nanofiltration membranes toward enhanced separation and antibacterial performance. J Colloid Interf Sci 2020; 572: 114–21. https://doi.org/10.1016/j.jcis.2020.03.087http://www.sciencedirect.com/science/article/pii/S002197972030388X.

    Article  CAS  Google Scholar 

  46. Klaysom C, Hermans S, Gahlaut A, Craenenbroeck SV, Vankelecom IF. Polyamide/polyacrylonitrile (pa/pan) thin film composite osmosis membranes: Film optimization, characterization and performance evaluation. J Membr Sci 2013;445:25–33. https://doi.org/10.1016/j.memsci.2013.05.037http://www.sciencedirect.com/science/article/pii/S0376738813004407.

    Article  CAS  Google Scholar 

  47. Saha N, Joshi S. Performance evaluation of thin film composite polyamide nanofiltration membrane with variation in monomer type. J Membr Sci 2009;342(1):60–69. https://doi.org/10.1016/j.memsci.2009.06.025http://www.sciencedirect.com/science/article/pii/S0376738809004633.

    Article  CAS  Google Scholar 

  48. Mbuli BS, Mhlanga SD, Mamba BB, Nxumalo EN. Fouling resistance and physicochemical properties of polyamide thin-film composite membranes modified with functionalized cyclodextrins. Adv Polym Technol 2017;36(2):249–60. https://doi.org/10.1002/adv.21720.

    Article  CAS  Google Scholar 

  49. Makhetha T, Moutloali R. Antifouling properties of cu(tpa)@go/pes composite membranes and selective dye rejection. J Membr Sci 2018;554:195–210. https://doi.org/10.1016/j.memsci.2018.03.003, http://www.sciencedirect.com/science/article/pii/S0376738817322287.

    Article  CAS  Google Scholar 

  50. Yang S, Zhen H, Su B. Polyimide thin film composite (tfc) membranes via interfacial polymerization on hydrolyzed polyacrylonitrile support for solvent resistant nanofiltration. RSC Adv 2017;7:42,800–10. https://doi.org/10.1039/C7RA08133B.

    Article  CAS  Google Scholar 

  51. Swamy BV, Madhumala M, Prakasham RS, Sridhar S. Processing of biscuit industrial effluent using thin film composite nanofiltration membranes. Des Monomers Polym 2016;19(1):47–55. https://doi.org/10.1080/15685551.2015.1092012.

    Article  Google Scholar 

  52. Abdikheibari S, Lei W, Dumée LF, Milne N, Baskaran K. Thin film nanocomposite nanofiltration membranes from amine functionalized-boron nitride/polypiperazine amide with enhanced flux and fouling resistance. J Mater Chem A 2018;6:12066–81. https://doi.org/10.1039/C8TA03446J.

    Article  CAS  Google Scholar 

  53. Wang YN, Tang CY. Protein fouling of nanofiltration, reverse osmosis, and ultrafiltration membranes—the role of hydrodynamic conditions, solution chemistry, and membrane properties. J Membr Sci 2011;376(1):275–82. https://doi.org/10.1016/j.memsci.2011.04.036http://www.sciencedirect.com/science/article/pii/S0376738811003012.

    Article  CAS  Google Scholar 

  54. Zhang R, Yu S, Shi W, Wang X, Cheng J, Zhang Z, Li L, Bao X, Zhang B. Surface modification of piperazine-based nanofiltration membranes with serinol for enhanced antifouling properties in polymer flooding produced water treatment. RSC Adv 2017;7:48904–12. https://doi.org/10.1039/C7RA09496E.

    Article  CAS  Google Scholar 

  55. Ba C, Ladner DA, Economy J. Using polyelectrolyte coatings to improve fouling resistance of a positively charged nanofiltration membrane. J Membr Sci 2010;347(1):250–9. https://doi.org/10.1016/j.memsci.2009.10.031http://www.sciencedirect.com/science/article/pii/S037673880900773X.

    Article  CAS  Google Scholar 

  56. Asatekin A, Olivetti EA, Mayes AM. Fouling resistant, high flux nanofiltration membranes from polyacrylonitrile-graft-poly(ethylene oxide). J Membr Sci 2009;332(1):6–12. https://doi.org/10.1016/j.memsci.2009.01.029, http://www.sciencedirect.com/science/article/pii/S0376738809000659.

    Article  CAS  Google Scholar 

  57. Listiarini K, Chun W, Sun DD, Leckie JO. Fouling mechanism and resistance analyses of systems containing sodium alginate, calcium, alum and their combination in dead-end fouling of nanofiltration membranes. J Membr Sci 2009;344(1):244–51. https://doi.org/10.1016/j.memsci.2009.08.010http://www.sciencedirect.com/science/article/pii/S0376738809005961.

    Article  CAS  Google Scholar 

  58. Facundo ML, Roca JM, Uribe BC, alvarez Blanco S. Evaluation of cleaning efficiency of ultrafiltration membranes fouled by bsa using ftir-atr as a tool. J Food Eng 2015;163:1–8. https://doi.org/10.1016/j.jfoodeng.2015.04.015http://www.sciencedirect.com/science/article/pii/S026087741500182X.

    Article  Google Scholar 

  59. Rahimpour A, Jahanshahi M, Rajaeian B, Rahimnejad M. Tio2 entrapped nano-composite pvdf/spes membranes: Preparation, characterization, antifouling and antibacterial properties. Desalination 2011; 278 (1): 343–53. https://doi.org/10.1016/j.desal.2011.05.049, http://www.sciencedirect.com/science/article/pii/S0011916411004620.

    Article  CAS  Google Scholar 

  60. Huang H, Yu J, Guo H, Shen Y, Yang F, Wang H, Liu R, Liu Y. Improved antifouling performance of ultrafiltration membrane via preparing novel zwitterionic polyimide. Appl Surf Sci 2018;427:38–47. https://doi.org/10.1016/j.apsusc.2017.08.004http://www.sciencedirect.com/science/article/pii/S0169433217323176.

    Article  CAS  Google Scholar 

  61. Rabiee H, Vatanpour V, Farahani MHDA, Zarrabi H. Improvement in flux and antifouling properties of pvc ultrafiltration membranes by incorporation of zinc oxide (zno) nanoparticles. Sep Purif Technol 2015;156:299–310. https://doi.org/10.1016/j.seppur.2015.10.015http://www.sciencedirect.com/science/article/pii/S1383586615302665.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ashok Kumar.

Ethics declarations

Conflict of Interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 1.49 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashok Kumar, S., Moncarmel Johanna, N., Beula Jenefer, V. et al. Influence of monomers involved in the fabrication of a novel PES based nanofiltration thin-film composite membrane and its performance in the treatment of common effluent (CETP) textile industrial wastewater. J Environ Health Sci Engineer 19, 515–529 (2021). https://doi.org/10.1007/s40201-021-00624-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40201-021-00624-x

Keywords

Navigation