Skip to main content
Log in

Characterization of the biosurfactant produced by Pesudomonas areuginosa strain R4 and its application for remediation pyrene-contaminated soils

  • Research article
  • Published:
Journal of Environmental Health Science and Engineering Aims and scope Submit manuscript

Abstract

A biosurfactant producing strain was isolated and the rhamnolipid type biosurfactant was extracted for soil washing of a synthetically and naturally hydrocarbon-contaminated soil. Following the primary screening, Pseudomonas aeruginosa strain R4 was selected and the effect of the carbon and nitrogen source and the salinity on biosurfactant production was studied. Of the best results were observed for glucose as a carbon source, NH4Cl as a nitrogen source and salinity of 1.4%. The produced biosurfactant was a glycolipid type biosurfactant and reduced the surface tension to 32.5 mN/m with a critical micelle concentration (CMC) of 50 mg/L and production yield of 90 mg/L. Using produced biosurfactant, a pyrene desorption rate of 82% was observed in selected conditions for initial pyrene concentration of 200 mg/L.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Abdel-Shafy HI, Mansour MS. A review on polycyclic aromatic hydrocarbons: source, environmental impact, effect on human health and remediation. Egypt J Pet. 2016;25(1):107–23.

    Google Scholar 

  2. Bento FM, Camargo FA, Okeke BC, Frankenberger WT. Comparative bioremediation of soils contaminated with diesel oil by natural attenuation, biostimulation and bioaugmentation. Bioresour Technol. 2005;96:1049–55.

    Article  CAS  Google Scholar 

  3. Ravindra K, Sokhi R, Van Grieken R. Atmospheric polycyclic aromatic hydrocarbons: source attribution, emission factors and regulation. Atmos Environ. 2008;42:2895–921.

    Article  CAS  Google Scholar 

  4. Freire C, Abril A, Fernández M, Ramos R, Estarlich M, Manrique A, et al. Urinary 1-hydroxypyrene and PAH exposure in 4-year-old Spanish children. Sci Total Environ. 2009;407:1562–9.

    Article  CAS  Google Scholar 

  5. Guo C, Zhou H, Wong Y, Tam N. Isolation of PAH-degrading bacteria from mangrove sediments and their biodegradation potential. Mar Pollut Bull. 2005;51:1054–61.

    Article  CAS  Google Scholar 

  6. Kiran GS, Thomas TA, Selvin J. Production of a new glycolipid biosurfactant from marine Nocardiopsis lucentensis MSA04 in solid-state cultivation. Colloids Surf. B. 2010;78:8–16.

    Article  CAS  Google Scholar 

  7. U.S. EPA. T. t. f. s. c. a. s. r. O., and of solid waste and emergency response. 10th ed; 2001.

    Google Scholar 

  8. Urum K, Grigson S, Pekdemir T, McMenamy S. A comparison of the efficiency of different surfactants for removal of crude oil from contaminated soils. Chemosphere. 2006;62:1403–10.

    Article  CAS  Google Scholar 

  9. Urum K, Pekdemir T, Gopur M. Optimum conditions for washing of crude oil-contaminated soil with biosurfactant solutions. Process Saf Environ. 2003;81:203–9.

    Article  CAS  Google Scholar 

  10. Urum K, Pekdemir T, Çopur M. Surfactants treatment of crude oil contaminated soils. J Colloid Interf Sci. 2004;276:456–64.

    Article  CAS  Google Scholar 

  11. Ilori M, Amobi C, Odocha A. Factors affecting biosurfactant production by oil degrading Aeromonas spp. isolated from a tropical environment. Chemosphere. 2005;61:985–92.

    Article  CAS  Google Scholar 

  12. Mehdi H, Giti E. Investigation of alkane biodegradation using the microtiter plate method and correlation between biofilm formation, biosurfactant production and crude oil biodegradation. Int Biodeterior Biodegrad. 2008;62:170–8.

    Article  CAS  Google Scholar 

  13. Saeki H, Sasaki M, Komatsu K, Miura A, Matsuda H. Oil spill remediation by using the remediation agent JE1058BS that contains a biosurfactant produced by Gordonia sp. strain JE-1058. Bioresour Technol. 2009;100:572–7.

    Article  CAS  Google Scholar 

  14. Varjani SJ, Upasani VN. Critical review on biosurfactant analysis, purification and characterization using rhamnolipid as a model biosurfactant. Bioresour Technol. 2017;232:389–97.

    Article  CAS  Google Scholar 

  15. Jorfi S, Rezaee A, Moheb-ali G-a, alah Jaafarzadeh N. Pyrene removal from contaminated soils by modified Fenton oxidation using iron nano particles. J Environ Health Sci. 2013b;11:17.

    Article  Google Scholar 

  16. Gaskin S, Bentham R. Comparison of enrichment methods for the isolation of pyrene-degrading bacteria. Int Biodeterior Biodegradation. 2005;56:80–5.

    Article  CAS  Google Scholar 

  17. Jorfi S, Rezaee A, Mobeh-Ali G-A, Jaafarzadeh NA. Application of biosurfactants produced by Pseudomonas aeruginosa SP4 for bioremediation of soils contaminated by pyrene. Soil Sediment Contam. 2013a;22:890–911.

    Article  Google Scholar 

  18. Nayak AS, Vijaykumar M, Karegoudar T. Characterization of biosurfactant produced by Pseudoxanthomonas sp. PNK-04 and its application in bioremediation. Int Biodeterior Biodegradation. 2009;63:73–9.

    Article  CAS  Google Scholar 

  19. Adebajo S, Akintokun A, Bolaji S. Biosurfactants producing bacteria from oil-polluted soil in Abeokuta, Ogun state. IFE J Sci. 2018;20:287–97.

    Article  Google Scholar 

  20. Lotfabad TB, Shourian M, Roostaazad R, Najafabadi AR, Adelzadeh MR, Noghabi KA. An efficient biosurfactant-producing bacterium Pseudomonas aeruginosa MR01, isolated from oil excavation areas in south of Iran. Colloids Surf. B. 2009;69:183–93.

    Article  CAS  Google Scholar 

  21. Darvishi P, Ayatollahi S, Mowla D, Niazi A. Biosurfactant production under extreme environmental conditions by an efficient microbial consortium, ERCPPI-2. Colloids Surf B. 2011;84:292–300.

    Article  CAS  Google Scholar 

  22. Talaie AR, Talaie MR, Haghighifar NJ. Optimizing biodegradation of floating diesel fuel contaminated wastewater using the Taguchy method. J Water Wastewater. 2009;20:57–68.

    Google Scholar 

  23. Assadi T, Bargahi A, Nabipour I, Mohebbi GH, Kholdebarin B, Mohajerani S, et al. Determination of fatty acid composition of halophyte plant (Suaeda vermiculata) collected from the shorelines of Persian gulf region (Bushehr Province). ISMJ. 2014;17:638–46.

    Google Scholar 

  24. Adamczak M, odzimierz Bednarski W. Influence of medium composition and aeration on the synthesis of biosurfactants produced by Candida antarctica. Biotechnol Lett. 2000;22:313–6.

    Article  CAS  Google Scholar 

  25. Robert M, Mercade M, Bosch M, Parra J, Espuny M, Manresa M, et al. Effect of the carbon source on biosurfactant production byPseudomonas aeruginosa 44T1. Biotechnol Lett. 1989;11:871–4.

    Article  CAS  Google Scholar 

  26. Bezza FA, Chirwa EMN. Biosurfactant from Paenibacillus dendritiformis and its application in assisting polycyclic aromatic hydrocarbon (PAH) and motor oil sludge removal from contaminated soil and sand media. Process Saf Environ. 2015;98:354–64.

    Article  CAS  Google Scholar 

  27. Sousa M, Melo V, Rodrigues S, Sant’ana H, Gonçalves L. Screening of biosurfactant-producing Bacillus strains using glycerol from the biodiesel synthesis as main carbon source. Bioprocess Biosyst Eng. 2012;35:897–906.

    Article  CAS  Google Scholar 

  28. Ayed HB, Jemil N, Maalej H, Bayoudh A, Hmidet N, Nasri M. Enhancement of solubilization and biodegradation of diesel oil by biosurfactant from Bacillus amyloliquefaciens An6. Int Biodeterior Biodegradation. 2015;99:8–14.

    Article  Google Scholar 

  29. Yin H, Qiang J, Jia Y, Ye J, Peng H, Qin H, et al. Characteristics of biosurfactant produced by Pseudomonas aeruginosa S6 isolated from oil-containing wastewater. Process Biochem. 2009;44:302–8.

    Article  CAS  Google Scholar 

  30. Joshi S, Bharucha C, Desai AJ. Production of biosurfactant and antifungal compound by fermented food isolate Bacillus subtilis 20B. Bioresour Technol. 2008;99:4603–8.

    Article  CAS  Google Scholar 

  31. Abouseoud M, Maachi R, Amrane A, Boudergua S, Nabi A. Evaluation of different carbon and nitrogen sources in production of biosurfactant by Pseudomonas fluorescens. Desalination. 2008;223:143–51.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This paper was issued from the thesis of Forud Niyazi under grant number ETRC-9526. Special thanks to Ahvaz Jundishapur University of Medical Sciences for their supports in conducting the current research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sahand Jorfi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmadi, M., Niazi, F., Jaafarzadeh, N. et al. Characterization of the biosurfactant produced by Pesudomonas areuginosa strain R4 and its application for remediation pyrene-contaminated soils. J Environ Health Sci Engineer 19, 445–456 (2021). https://doi.org/10.1007/s40201-021-00617-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40201-021-00617-w

Keywords

Navigation