Skip to main content
Log in

Aliphatic hydrocarbons in urban runoff sediments: a case study from the megacity of Tehran, Iran

  • Research article
  • Published:
Journal of Environmental Health Science and Engineering Aims and scope Submit manuscript

Abstract

Urban runoff is known as an important contributor to diffuse a wide range of pollutants to receiving environments. Hydrocarbons are common contaminants in runoff mainly transported coupled to suspended particles and sediments. The aim of the study was to investigate the distribution and sources of Aliphatics in the sediments of Tehran’s runoff drainage network. Thirty surface sediment samples were collected along with three main sub-catchments of Tehran during April 2017. The concentrations of n-Alkanes (nC-11-nC-35) and isoprenoids were determined by GC-MS, and their possible emission sources were evaluated using the biomarkers and the diagnostic ratios. Total aliphatic hydrocarbon (n-alkanes + isoprenoids) concentrations were found in the range of 2.94 to114.7 mg.kg−1 dw with the total mean of 25.4 mg.kg-1 dw in the whole catchment. The significant concentrations of n-alkanes between n-C20 and n-C24 indicate the predominance of petrogenic origins at all stations. The CPI values range from 0.7 to 3, except the station C1S28 (CPI = 4.2). The CPI values were less than 1.6 at 70% of the stations which indicate the petrogenic nature of the aliphatic origins. Pr/Ph and LMW/HMW ratios ranged from 0.3 to 2.5 and 0.3 to 5.6 confirmed the petrogenic sources as the major origin of Aliphatics in urban runoff sediments. The ratios of n-C17/Pr and n-C18/Ph vary from 0.4 to 2.1 and 0.2 to 2.1, respectively which showed that petroleum contamination is mainly due to the degraded oil products with a lesser extent of fresh oil. Results revealed that the aliphatic hydrocarbons in the sediment samples were derived mainly from petrogenic sources such as leakage and spillage of fuels and petroleum derivatives with a relatively low contribution of biogenic sources. Vascular plants’ waxes and microbial activities are identified as the most important biogenic sources of the samples. The mean concentrations of total organic carbon were 13.3,12 and14.7 mg.g−1 dw in the sub-catchments 1, 2, and 3, respectively. Pearson correlation test demonstrated a weak correlation between the concentrations of n-alkanes and TOC (P > 0.05) with a correlation coefficient of less than 0.54 for all the sub-catchments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Total Organic Carbon (TOC)

  2. Soxhlet Extraction Method

  3. Loss on Ignition (LOI)

  4. The least significant difference (LSD)

  5. Pristane (Pr)

  6. Phytane (Ph)

  7. n-Alkane

References

  1. Khiadani M, Zarrabi M, Foroughi M. Urban runoff treatment using nano-sized iron oxide coated sand with and without magnetic field applying. J Environ Health Sci Eng. 2013;11(1):43.

    Google Scholar 

  2. van den Hurk P, Haney DC. Biochemical effects of pollutant exposure in fish from urban creeks in Greenville, SC (USA). Environ Monit Assess. 2017;189(5):211.

    Google Scholar 

  3. de Andrade LC, Coelho FF, Hassan SM, Morris LA, de Oliveira Camargo FA. Sediment pollution in an urban water supply lake in southern Brazil. Environ Monit Assess. 2019;191(1):12.

    Google Scholar 

  4. Gnecco I, Berretta C, Lanza L, La Barbera P. Storm water pollution in the urban environment of Genoa, Italy. Atmos Res. 2005;77(1–4):60–73.

    CAS  Google Scholar 

  5. Howitt JA, Mondon J, Mitchell BD, Kidd T, Eshelman B. Urban stormwater inputs to an adapted coastal wetland: role in water treatment and impacts on wetland biota. Sci Total Environ. 2014;485:534–44.

    Google Scholar 

  6. Hanedar A, Alp K, Kaynak B, Baek J, Avsar E, Odman MT. Concentrations and sources of PAHs at three stations in Istanbul, Turkey. Atmos Res. 2011;99(3–4):391–9.

    CAS  Google Scholar 

  7. Hanedar A, Alp K, Kaynak B, Avşar E. Toxicity evaluation and source apportionment of polycyclic aromatic hydrocarbons (PAHs) at three stations in Istanbul, Turkey. Sci Total Environ. 2014;488:437–46.

    Google Scholar 

  8. Wang L, Zhang S, Wang L, Zhang W, Shi X, Lu X, et al. Concentration and risk evaluation of polycyclic aromatic hydrocarbons in urban soil in the typical semi-arid city of Xi’an in Northwest China. Int J Environ Res Public Health. 2018;15(4):607.

    Google Scholar 

  9. Sanches Filho PJ, Böhm EM, Böhm GM, Montenegro GO, Silveira LA, Betemps GR. Determination of hydrocarbons transported by urban runoff in sediments of São Gonçalo Channel (Pelotas–RS, Brazil). Mar Pollut Bull. 2017;114(2):1088–95.

    CAS  Google Scholar 

  10. Paule-Mercado MCA, Salim I, Lee B-Y, Lee C-H, Jahng D. Intra-event variability of bacterial composition in stormwater runoff from mixed land use and land cover catchment. Membr Water Treat. 2019;10(1):29–38.

    Google Scholar 

  11. Göbel P, Dierkes C, Coldewey W. Storm water runoff concentration matrix for urban areas. J Contam Hydrol. 2007;91(1–2):26–42.

    Google Scholar 

  12. Ye B, Zhang Z, Mao T. Petroleum hydrocarbon in surficial sediment from rivers and canals in Tianjin, China. Chemosphere. 2007;68(1):140–9.

    CAS  Google Scholar 

  13. Bartlett A, Rochfort Q, Brown L, Marsalek J. Causes of toxicity to Hyalella azteca in a stormwater management facility receiving highway runoff and snowmelt. Part I: polycyclic aromatic hydrocarbons and metals. Sci Total Environ. 2012;414:227–37.

    CAS  Google Scholar 

  14. Maciel DC, de Souza JRB, Taniguchi S, Bícego MC, Schettini CAF, Zanardi-Lamardo E. Hydrocarbons in sediments along a tropical estuary-shelf transition area: sources and spatial distribution. Mar Pollut Bull. 2016;113(1):566–71. https://doi.org/10.1016/j.marpolbul.2016.08.048.

    Article  CAS  Google Scholar 

  15. Martins CC, Bícego MC, Taniguchi S, Montone RC. Aliphatic and polycyclic aromatic hydrocarbons in surface sediments in Admiralty Bay, King George Island, Antarctica. Antarct Sci. 2004;16(2):117–22.

    Google Scholar 

  16. Jeng W-L, Huh C-A. A comparison of sedimentary aliphatic hydrocarbon distribution between the southern Okinawa trough and a nearby river with high sediment discharge. Estuar Coast Shelf Sci. 2006;66(1–2):217–24.

    Google Scholar 

  17. Akhbarizadeh R, Moore F, Keshavarzi B, Moeinpour A. Aliphatic and polycyclic aromatic hydrocarbons risk assessment in coastal water and sediments of Khark Island, SW Iran. Mar Pollut Bull. 2016;108(1–2):33–45.

    CAS  Google Scholar 

  18. Nicolaus EM, Law RJ, Wright SR, Lyons BP. Spatial and temporal analysis of the risks posed by polycyclic aromatic hydrocarbon, polychlorinated biphenyl and metal contaminants in sediments in UK estuaries and coastal waters. Mar Pollut Bull. 2015;95(1):469–79.

    Google Scholar 

  19. Zhou R, Qin X, Peng S, Deng S. Total petroleum hydrocarbons and heavy metals in the surface sediments of Bohai Bay, China: long-term variations in pollution status and adverse biological risk. Mar Pollut Bull. 2014;83(1):290–7.

    CAS  Google Scholar 

  20. Wang M, Wang C, Hu X, Zhang H, He S, Lv S. Distributions and sources of petroleum, aliphatic hydrocarbons and polycyclic aromatic hydrocarbons (PAHs) in surface sediments from Bohai Bay and its adjacent river, China. Mar Pollut Bull. 2015;90(1–2):88–94.

    CAS  Google Scholar 

  21. Azimi A, Bakhtiari AR, Tauler R. Chemometrics analysis of petroleum hydrocarbons sources in the street dust, runoff and sediment of urban rivers in Anzali port-south of Caspian Sea. Environ Pollut. 2018;243:374–82.

    CAS  Google Scholar 

  22. Yunker MB, Macdonald RW. Alkane and PAH depositional history, sources and fluxes in sediments from the Fraser River basin and strait of Georgia, Canada. Org Geochem. 2003;34(10):1429–54.

    CAS  Google Scholar 

  23. Cortes J, Suspes A, Roa S, Gonzãlez C, Castro H. Total petroleum hydrocarbons by gas chromatography in Colombian waters and soils. Am J Environ Sci. 2012;8(4):396.

    CAS  Google Scholar 

  24. Turki A. Distribution and sources of aliphatic hydrocarbons in surface sediments of Al-Arbaeen lagoon, Jeddah, Saudi Arabia. J Fish Livest Prod. 2016;4(2):1–10.

    Google Scholar 

  25. Simoneit BR. Diterpenoid compounds and other lipids in deep-sea sediments and their geochemical significance. Geochim Cosmochim Acta. 1977;41(4):463–76.

    CAS  Google Scholar 

  26. Bourbonniere RA, Meyers PA. Anthropogenic influences on hydrocarbon contents of sediments deposited in eastern Lake Ontario since 1800. Environ Geol. 1996;28(1):22–8.

    CAS  Google Scholar 

  27. Jafarabadi AR, Dashtbozorg M, Bakhtiari AR, Maisano M, Cappello T. Geochemical imprints of occurrence, vertical distribution and sources of aliphatic hydrocarbons, aliphatic ketones, hopanes and steranes in sediment cores from ten Iranian Coral Islands, Persian gulf. Mar Pollut Bull. 2019;144:287–98.

    CAS  Google Scholar 

  28. Jafarabadi AR, Bakhtiari AR, Aliabadian M, Toosi AS. Spatial distribution and composition of aliphatic hydrocarbons, polycyclic aromatic hydrocarbons and hopanes in superficial sediments of the coral reefs of the Persian Gulf, Iran. Environ Pollut. 2017;224:195–223.

    Google Scholar 

  29. Awan AT, Niño LR, Paix MDA, Mozeto AA, Fadini PS. Urban stream vulnerability toward PAHs and n-alkanes and their source identification. Polycycl Aromat Compd. 2018;38(3):294–309.

    CAS  Google Scholar 

  30. Kanzari F, Syakti A, Asia L, Malleret L, Piram A, Mille G, et al. Distributions and sources of persistent organic pollutants (aliphatic hydrocarbons, PAHs, PCBs and pesticides) in surface sediments of an industrialized urban river (Huveaune), France. Sci Total Environ. 2014;478:141–51.

    CAS  Google Scholar 

  31. Bayat J, Hashemi S, Khoshbakht K, Deihimfard R, Shahbazi A, Momeni-Vesalian R. Monitoring of polycyclic aromatic hydrocarbons on agricultural lands surrounding Tehran oil refinery. Environ Monit Assess. 2015;187(7):451.

    CAS  Google Scholar 

  32. Hani A, Pazira E, Manshouri M, Kafaky SB, Tali MG. Spatial distribution and mapping of risk elements pollution in agricultural soils of southern Tehran, Iran. Plant Soil Environ. 2010;56(6):288–96.

    CAS  Google Scholar 

  33. Bayat J, Hashemi SH, Khoshbakht K, Deihimfard R. Fingerprinting aliphatic hydrocarbon pollutants over agricultural lands surrounding Tehran oil refinery. Environ Monit Assess. 2016;188(11):612.

    Google Scholar 

  34. Ramyar R, Saeedi S, Bryant M, Davatgar A, Hedjri GM. Ecosystem services mapping for green infrastructure planning–the case of Tehran. Sci Total Environ. 2020;703:135466.

    CAS  Google Scholar 

  35. Ghahroudi Tali M, Derafshi KB. Investigation of turbulence in the pattern of flood risk in Tehran city. J Spatial Anal Environ Hazarts. 2015;2:1–16.

  36. Moopam R. Manual of oceanographic observations and pollutant analysis methods. ROPME Kuwait. 1999;1:20.

    Google Scholar 

  37. (DIN) Soil Improvers And Growing Media - Determination Of Organic Matter Content And Ash; German Version EN 13039. 2012

  38. Duong HT, Kadokami K, Pan S, Matsuura N, Nguyen TQ. Screening and analysis of 940 organic micro-pollutants in river sediments in Vietnam using an automated identification and quantification database system for GC–MS. Chemosphere. 2014;107:462–72.

    CAS  Google Scholar 

  39. Volkman JK, Holdsworth DG, Neill GP, Bavor H Jr. Identification of natural, anthropogenic and petroleum hydrocarbons in aquatic sediments. Sci Total Environ. 1992;112(2–3):203–19.

    CAS  Google Scholar 

  40. Commendatore MG, Nievas ML, Amin O, Esteves JL. Sources and distribution of aliphatic and polyaromatic hydrocarbons in coastal sediments from the Ushuaia Bay (Tierra del Fuego, Patagonia, Argentina). Mar Environ Res. 2012;74:20–31.

    CAS  Google Scholar 

  41. Dauner ALL, Hernández EA, MacCormack WP, Martins CC. Molecular characterisation of anthropogenic sources of sedimentary organic matter from potter cove, King George Island, Antarctica. Sci Total Environ. 2015;502:408–16.

    CAS  Google Scholar 

  42. Bomboi M, Hernandez A. Hydrocarbons in urban runoff: their contribution to the wastewaters. Water Res. 1991;25(5):557–65.

    CAS  Google Scholar 

  43. Adeniji A, Okoh O, Okoh A. Petroleum hydrocarbon fingerprints of water and sediment samples of Buffalo River estuary in the eastern Cape Province, South Africa. J Anal Methods Chem. 2017;2017:1–13.

    Google Scholar 

  44. Shirneshan G, Bakhtiari AR, Memariani M. Identifying the source of petroleum pollution in sediment cores of southwest of the Caspian Sea using chemical fingerprinting of aliphatic and alicyclic hydrocarbons. Mar Pollut Bull. 2017;115(1–2):383–90.

    CAS  Google Scholar 

  45. Ines Z, Amina B, Mahmoud R, Dalila S-M. Aliphatic and aromatic biomarkers for petroleum hydrocarbon monitoring in Khniss Tunisian-coast,(Mediterranean Sea). Procedia Environ Sci. 2013;18:211–20.

    CAS  Google Scholar 

  46. Wang Z, Fingas MF. Development of oil hydrocarbon fingerprinting and identification techniques. Mar Pollut Bull. 2003;47(9–12):423–52.

    CAS  Google Scholar 

  47. Darilmaz E. Aliphatic hydrocarbons in coastal sediments of the northern Cyprus (eastern Mediterranean). Environ Earth Sci. 2017;76(5):220.

    Google Scholar 

  48. Sanil Kumar K, Nair S, Salas P, Prashob Peter K, Ratheesh KC. Aliphatic and polycyclic aromatic hydrocarbon contamination in surface sediment of the Chitrapuzha River, South West India. Chem Ecol. 2016;32(2):117–35.

    CAS  Google Scholar 

  49. Bray E, Evans E. Distribution of n-paraffins as a clue to recognition of source beds. Geochim Cosmochim Acta. 1961;22(1):2–15.

    CAS  Google Scholar 

  50. Boehm PD, Requejo A. Overview of the recent sediment hydrocarbon geochemistry of Atlantic and Gulf Coast outer continental shelf environments. Estuar Coast Shelf Sci. 1986;23(1):29–58.

    CAS  Google Scholar 

  51. Al-Saad HT, Farid WA, Ateek AA, Sultan AWA, Ghani AA, Mahdi S. n-Alkanes in surficial soils of Basrah city. Southern Iraq Int J Mar Sci. 2015;5(52):1–8.

    Google Scholar 

  52. Sanches Filho PJ, Luz LPd, Betemps GR, Silva MDRGd, Caramão EB. Studies of n-alkanes in the sediments of colony Z3 (Pelotas-RS-Brazil). Braz J Aquat Sci Technol Itajaí, SC Vol 17, n 1 (2013), p 27–33. 2013.

  53. Bouzid S, Raissouni A, Khannous S, Arrim AE, Bouloubassi I, Saliot A, et al. Distribution and origin of aliphatic hydrocarbons in surface sediments of strategical areas of the western Moroccan Mediterranean Sea. Open Environ Pollut Toxicol J. 2012;3(1).

  54. Simoneit BR, Sheng G, Chen X, Fu J, Zhang J, Xu Y. Molecular marker study of extractable organic matter in aerosols from urban areas of China. Atmos Environ Part A. 1991;25(10):2111–29.

    Google Scholar 

  55. Tran K, Yu CC, Zeng EY. Organic pollutants in the coastal environment off San Diego, California. 2. Petrogenic and biogenic sources of aliphatic hydrocarbons. Environ Toxicol Chem. 1997;16(2):189–95.

    CAS  Google Scholar 

  56. Meyers PA. Applications of organic geochemistry to paleolimnological reconstructions: a summary of examples from the Laurentian Great Lakes. Org Geochem. 2003;34(2):261–89.

    CAS  Google Scholar 

  57. Wang S, Liu G, Yuan Z, Da C. N-alkanes in sediments from the Yellow River estuary, China: occurrence, sources and historical sedimentary record. Ecotoxicol Environ Saf. 2018;150:199–206.

    CAS  Google Scholar 

  58. Moeinaddini M, Sari AE, Chan AY-C, Taghavi SM, Hawker D, Connell D. Source apportionment of PAHs and n-alkanes in respirable particles in Tehran, Iran by wind sector and vertical profile. Environ Sci Pollut Res. 2014;21(12):7757–72.

    CAS  Google Scholar 

  59. Hoffman EJ, Latimer JS, Mills GL, Quinn JG. Petroleum Hydrocarbons in Urban Runoff from a Commerical Land Use Area. J Water Pollut Control Fed. 1982:1517–25.

  60. Gearing P, Gearing JN, Lytle TF, Lytle JS. Hydrocarbons in 60 Northeast Gulf of Mexico shelf sediments: a preliminary survey. Geochim Cosmochim Acta. 1976;40(9):1005–17.

    CAS  Google Scholar 

  61. Zhang J, Dai J, Du X, Li F, Wang W, Wang R. Distribution and sources of petroleum-hydrocarbon in soil profiles of the Hunpu wastewater-irrigated area, China's northeast. Geoderma. 2012;173:215–23.

    Google Scholar 

  62. Wakeham SG, Carpenter R. Aliphatic hydrocarbons in sediments of Lake Washington 1. Limnol Oceanogr. 1976;21(5):711–23.

    CAS  Google Scholar 

  63. Mille G, Asia L, Guiliano M, Malleret L, Doumenq P. Hydrocarbons in coastal sediments from the Mediterranean Sea (gulf of Fos area, France). Mar Pollut Bull. 2007;54(5):566–75.

    CAS  Google Scholar 

  64. UNEP (United Nations Environment Programme) Chemicals. Master list of actions: on the reduction and/or elimination of the releases of persistent organic pollutants. Geneva: UNEP Chemicals; 2003.

  65. Columbo J, Pelletier C, Brochu A, Khalil M, Catoggio J. Determination of hydrocarbons sources using n-alkanes and polyaromatic hydrocarbons distribution indexes. Environ Sci Technol. 1989;23:888–94.

    Google Scholar 

  66. Moilleron R, Gonzalez A, Chebbo G, Thévenot DR. Determination of aliphatic hydrocarbons in urban runoff samples from the “Le Marais” experimental catchment in Paris Centre. Water Res. 2002;36(5):1275–85.

    CAS  Google Scholar 

  67. Hashemi SH, Hasani Moghaddam A, Ghadiri A. Polycyclic Aromatic Hydrocarbons (PAHs) in Urban Runoff Sediments (Case Study: Tehran City, Amirkabir). J Civ Eng. 2019. https://doi.org/10.22060/ceej.2019.16098.6124.

  68. Ezra S, Feinstein S, Pelly I, Bauman D, Miloslavsky I. Weathering of fuel oil spill on the East Mediterranean coast, Ashdod, Israel. Org Geochem. 2000;31(12):41–1733.

    Google Scholar 

  69. Shi Z, Tao S, Pan B, Liu W, Shen W. Partitioning and source diagnostics of polycyclic aromatic hydrocarbons in rivers in Tianjin, China. Environ Pollut. 2007;146(2):492–500.

    CAS  Google Scholar 

  70. Zamani-Ahmadmahmoodi R, Esmaili-Sari A, Mohammadi J, Bakhtiari AR, Savabieasfahani M. Spatial distribution of cadmium and lead in the sediments of the western Anzali wetlands on the coast of the Caspian Sea (Iran). Mar Pollut Bull. 2013;74(1):464–70.

    CAS  Google Scholar 

  71. Wang X-C, Sun S, Ma H-Q, Liu Y. Sources and distribution of aliphatic and polyaromatic hydrocarbons in sediments of Jiaozhou Bay, Qingdao, China. Mar Pollut Bull. 2006;52(2):129–38.

    CAS  Google Scholar 

  72. Commendatore M, Esteves J. Natural and anthropogenic hydrocarbons in sediments from the Chubut River (Patagonia, Argentina). Mar Pollut Bull. 2004;48(9–10):910–8.

    CAS  Google Scholar 

  73. Bakhtiari AR, Zakaria MP, Yaziz MI, Lajis MNH, Bi X, Shafiee MM, et al. Distribution of PAHs and n-alkanes in Klang River surface sediments, Malaysia Pertanika. J Sci Technol. 2010;18(1):167–79.

    Google Scholar 

  74. Harris KA, Yunker MB, Dangerfield N, Ross PS. Sediment-associated aliphatic and aromatic hydrocarbons in coastal British Columbia, Canada: concentrations, composition, and associated risks to protected sea otters. Environ Pollut. 2011;159(10):2665–74.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Hossein Hashemi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasani Moghaddam, A., Hashemi, S.H. & Ghadiri, A. Aliphatic hydrocarbons in urban runoff sediments: a case study from the megacity of Tehran, Iran. J Environ Health Sci Engineer 19, 205–216 (2021). https://doi.org/10.1007/s40201-020-00596-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40201-020-00596-4

Keywords

Navigation