Photocatalytic activity of synthetic ZnO/WO3 nanocomposites immobilized on a Y-zeolite in removal of gas-phase styrene

Abstract

Purpose

The widespread use of styrene along with its harmful effects on human health has led to many studies on how to control and reduce its vapors in the workplace. In this study, efficient removal of styrene molecules in the gas phase was attempted by using Y-ZnO/WO3 hybrid photocatalysts.

Methods

ZnO/WO3 nanocomposites with different WO3 Wt% were prepared and immobilized on Y-zeolite. The samples’ characteristics were evaluated using X-ray diffraction (XRD), energy dispersive X-ray spectrum (EDS), Brunauer-Emmet-Teller (BET) and field emission scanning electron microscopy (FESEM).

Results

The Y- ZnO/WO3 catalyst exhibits an improved photocatalytic activity as compared to Y-ZnO and Y-zeolite alone. This higher photocatalytic activity of the ZnO/WO3 supported on Y-zeolite can be attributed to a more efficient interaction of the ZnO/WO3 with the zeolite leading to higher adsorption capacities. Results reveal that the photocatalyst was highly photoactive in mineralizing styrene. The high activity can be attributed to the synergetic effects of strong UV, ZnO/WO3 nanocomposite and surface hydroxyl groups. The photocatalytic degradation reaction of styrene with the Y-ZnO/WO3 follows Langmuir-Hinshelwood kinetics.

Conclusions

The results of this study indicate that this photocatalyst is suitable for the removal of styrene under UV light. The highest removal efficiency achieved was with Y-ZnO/WO3 at 2%.

Graphical abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    EPA. Drinking water standards technical factsheet on: styrene. Water. 1993:1–4.

  2. 2.

    US Environmental Protection Agency (USEPA). Sources of indoor air pollution - organic gases (volatile organic compounds, VOCs). USEPA, 2013.

  3. 3.

    Adhikari S, Sarkar D, Madras G. Highly efficient WO 3–ZnO mixed oxides for photocatalysis. RSC Adv. 2015;5:11895–904.

    CAS  Article  Google Scholar 

  4. 4.

    Akhavan O. Graphene nanomesh by ZnO nanorod photocatalysts. ACS Nano. 2010;4:4174–80.

    CAS  Article  Google Scholar 

  5. 5.

    Ao C, Lee S. Enhancement effect of TiO 2 immobilized on activated carbon filter for the photodegradation of pollutants at typical indoor air level. Appl Catal B Environ. 2003;44:191–205.

    CAS  Article  Google Scholar 

  6. 6.

    Ao C, Lee S. Combination effect of activated carbon with TiO 2 for the photodegradation of binary pollutants at typical indoor air level. J Photochem Photobiol A Chem. 2004;161:131–40.

    CAS  Article  Google Scholar 

  7. 7.

    Ao C, Lee S, Yu J, Xu J. Photodegradation of formaldehyde by photocatalyst TiO2: effects on the presences of NO, SO2 and VOCs. Appl Catal B Environ. 2004;54:41–50.

    CAS  Article  Google Scholar 

  8. 8.

    T. ATSDR, ATSDR (Agency for toxic substances and disease registry), Prepared by Clement International Corp., under contract 205 88–0608.

  9. 9.

    Baral S, Das N, Ramulu T, Sahoo S, Das S, Chaudhury GR. Removal of Cr (VI) by thermally activated weed Salvinia cucullata in a fixed-bed column. J Hazard Mater. 2009;161:1427–35.

    CAS  Article  Google Scholar 

  10. 10.

    Baruah S, Mahmood MA, Myint MTZ, Bora T, Dutta J. Enhanced visible light photocatalysis through fast crystallization of zinc oxide nanorods. Beilstein J Nanotechnol. 2010;1:14–20.

  11. 11.

    Bhaumik M, Setshedi K, Maity A, Onyango MS. Chromium (VI) removal from water using fixed bed column of polypyrrole/Fe3O4 nanocomposite. Sep Purif Technol. 2013;110:11–9.

    CAS  Article  Google Scholar 

  12. 12.

    Bouzaza A, Laplanche A. Photocatalytic degradation of toluene in the gas phase: comparative study of some TiO2 supports. J Photochem Photobiol A Chem. 2002;150:207–12.

    CAS  Article  Google Scholar 

  13. 13.

    Changlin Y, Kai Y, Qing S, Jimmy CY, Fangfang C, Xin L. Preparation of WO3/ZnO composite photocatalyst and its photocatalytic performance. Chin J Catal. 2011;32:555–65.

    Article  Google Scholar 

  14. 14.

    Changlin Y, Kai Y, Qing S, Jimmy CY, Fangfang C, Xin L. Preparation of WO 3/ZnO composite photocatalyst and its photocatalytic performance. Chin J Catal. 2011;32:555–65.

    Article  Google Scholar 

  15. 15.

    Chu S, Wang G, Zhou W, Lin Y, Chernyak L, Zhao J, et al. Electrically pumped waveguide lasing from ZnO nanowires. Nat Nanotechnol. 2011;6:506–10.

    CAS  Article  Google Scholar 

  16. 16.

    Colis S, Bieber H, Bégin-Colin S, Schmerber G, Leuvrey C, Dinia A. Magnetic properties of co-doped ZnO diluted magnetic semiconductors prepared by low-temperature mechanosynthesis. Chem Phys Lett. 2006;422:529–33.

    CAS  Article  Google Scholar 

  17. 17.

    Colmenares J, Aramendia M, Marinas A, Marinas J, Urbano F. Synthesis, characterization and photocatalytic activity of different metal-doped titania systems. Appl Catal A Gen. 2006;306:120–7.

    CAS  Article  Google Scholar 

  18. 18.

    Henderson MA. A surface science perspective on photocatalysis. Surf Sci Rep. 2011;66:185–297.

    CAS  Article  Google Scholar 

  19. 19.

    Hunter P, Oyama ST. Control of volatile organic compound emissions: John Wiley; 2000.

  20. 20.

    Jibril B, Atta A, Al-Waheibi Y, Al-Waheibi T. Effect of copper loadings on product selectivities in microwave-enhanced degradation of phenol on alumina-supported copper oxides. J Ind Eng Chem. 2013;19:1800–4.

    CAS  Article  Google Scholar 

  21. 21.

    Khodja AA, Sehili T, Pilichowski J-F, Boule P. Photocatalytic degradation of 2-phenylphenol on TiO 2 and ZnO in aqueous suspensions. J Photochem Photobiol A Chem. 2001;141:231–9.

    CAS  Article  Google Scholar 

  22. 22.

    Kim SB, Hong SC. Kinetic study for photocatalytic degradation of volatile organic compounds in air using thin film TiO2 photocatalyst. Appl Catal B Environ. 2002;35:305–15.

    Article  Google Scholar 

  23. 23.

    Kislov N, Lahiri J, Verma H, Goswami DY, Stefanakos E, Batzill M. Photocatalytic degradation of methyl orange over single crystalline ZnO: orientation dependence of photoactivity and photostability of ZnO. Langmuir. 2009;25:3310–5.

    CAS  Article  Google Scholar 

  24. 24.

    Li D, Haneda H, Ohashi N, Hishita S, Yoshikawa Y. Synthesis of nanosized nitrogen-containing MO x–ZnO (M= W, V, Fe) composite powders by spray pyrolysis and their visible-light-driven photocatalysis in gas-phase acetaldehyde decomposition. Catal Today. 2004;93:895–901.

    Article  Google Scholar 

  25. 25.

    Li D, Haneda H, Ohashi N, Saito N, Hishita S. Morphological reform of ZnO particles induced by coupling with MO x (M= V, W, Ce) and the effects on photocatalytic activity. Thin Solid Films. 2005;486:20–3.

    CAS  Article  Google Scholar 

  26. 26.

    Li L, Yang H, Zhao H, Yu J, Ma J, An L, et al. Hydrothermal synthesis and gas sensing properties of single-crystalline ultralong ZnO nanowires. Applied Physics A. 2010;98:635–41.

    CAS  Article  Google Scholar 

  27. 27.

    Li P, Wei Z, Wu T, Peng Q, Li Y. Au− ZnO hybrid nanopyramids and their photocatalytic properties. J Am Chem Soc. 2011;133:5660–3.

    CAS  Article  Google Scholar 

  28. 28.

    Nikazar M, Gholivand K, Mahanpoor K. Photocatalytic degradation of azo dye acid red 114 in water with TiO 2 supported on clinoptilolite as a catalyst. Desalination. 2008;219:293–300.

    CAS  Article  Google Scholar 

  29. 29.

    Rao K, Anand S, Venkateswarlu P. Modeling the kinetics of Cd (II) adsorption on Syzygium cumini L leaf powder in a fixed bed mini column. J Ind Eng Chem. 2011;17:174–81.

    CAS  Article  Google Scholar 

  30. 30.

    Sakthivel S, Geissen S-U, Bahnemann D, Murugesan V, Vogelpohl A. Enhancement of photocatalytic activity by semiconductor heterojunctions: α-Fe2O3, WO3 and CdS deposited on ZnO. J Photochem Photobiol A Chem. 2002;148:283–93.

    CAS  Article  Google Scholar 

  31. 31.

    Subash B, Krishnakumar B, Swaminathan M, Shanthi M. Highly efficient, solar active, and reusable photocatalyst: Zr-loaded Ag–ZnO for reactive red 120 dye degradation with synergistic effect and dye-sensitized mechanism. Langmuir. 2013;29:939–49.

    CAS  Article  Google Scholar 

  32. 32.

    Uchiyama S, Hasegawa S. Investigation of a long-term sampling period for monitoring volatile organic compounds in ambient air. Environ Sci Technol. 2000;34:4656–61.

  33. 33.

    Ullah R, Dutta J. Photocatalytic degradation of organic dyes with manganese-doped ZnO nanoparticles. J Hazard Mater. 2008;156:194–200.

    CAS  Article  Google Scholar 

  34. 34.

    Vanheusden K, Warren W, Voigt J, Seager C, Tallant D. Impact of Pb doping on the optical and electronic properties of ZnO powders. Appl Phys Lett. 1995;67:1280–2.

    CAS  Article  Google Scholar 

  35. 35.

    Mortazavi SB, Salari M, Asilian Mahabadi H, Maryam RAS, Miri M, Yazdani Aval M. Comparing ZSM5, TiO2/ZSM5, UV/ZSM5, and UV/TiO2/ZSM5 processes in removal of styrene from synthetic air current. Journal of Mazandaran University of Medical Sciences. 2018;28:187–98.

    Google Scholar 

  36. 36.

    Rangkooy HA, Pour MN, Dehaghi BF. Efficiency evaluation of the photocatalytic degradation of zinc oxide nanoparticles immobilized on modified zeolites in the removal of styrene vapor from air. Korean J Chem Eng. 2017;34:3142–9.

    Article  Google Scholar 

  37. 37.

    Rangkoy HA, Nakhaei M, Jahani F, Salari S, Nematpour L, Fouladi B. Effect of nano-TiO2 immobilized on activated carbon, zeolite Y and ZSM-5 on the removal of styrene vapors from polluted air. Journal of Nanostructures. 2018;8:307–15.

    Google Scholar 

  38. 38.

    Salem M, Asilian H, Khavanin A, Yamini Y. Photocatalytic removal of styrene from air using titanium dioxide nanoparticles stabilized on modified natural zeolite and gamma radiation. Journal Mil Med. 2017;19:358–65.

    Google Scholar 

  39. 39.

    Zhang Q, Xie L, Lu J, Ma Q, Yu Z, Zhu C. Catalytic removal of gaseous styrene using DBD combined with NiO/pyrite composite. Solid State Sci. 2020;106167.

  40. 40.

    Wang K-H, Tsai H-H, Hsieh Y-H. The kinetics of photocatalytic degradation of trichloroethylene in gas phase over TiO2 supported on glass bead. Appl Catal B Environ. 1998;17:313–20.

    CAS  Article  Google Scholar 

  41. 41.

    Wang K-h, Tsai H-h, Hsieh Y-h. A study of photocatalytic degradation of trichloroethylene in vapor phase on TiO2 photocatalyst. Chemosphere. 1998;36:2763–73.

    CAS  Article  Google Scholar 

  42. 42.

    Wang R, Xin JH, Yang Y, Liu H, Xu L, Hu J. The characteristics and photocatalytic activities of silver doped ZnO nanocrystallites. Appl Surf Sci. 2004;227:312–7.

    CAS  Article  Google Scholar 

  43. 43.

    Wang X, Zhou J, Song J, Liu J, Xu N, Wang ZL. Piezoelectric field effect transistor and nanoforce sensor based on a single ZnO nanowire. Nano Lett. 2006;6:2768–72.

    CAS  Article  Google Scholar 

  44. 44.

    Yeber M, Rodríguez J, Freer J, Baeza J, Durán N, Mansilla HD. Advanced oxidation of a pulp mill bleaching wastewater. Chemosphere. 1999;39:1679–88.

    CAS  Article  Google Scholar 

  45. 45.

    Zheng H, Ou JZ, Strano MS, Kaner RB, Mitchell A, Kalantar-zadeh K. Nanostructured tungsten oxide–properties, synthesis, and applications. Adv Funct Mater. 2011;21:2175–96.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The study was financially supported by the research deputy of the Ahvaz Jundishapur University of Medical Sciences under project No. ETRC-9603. The authors wish to thank the officials of the University for their Support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mojtaba Nakhaei pour.

Ethics declarations

Conflict of interest

No.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rangkooy, H.A., Jahani, F., Afshar faroji, D. et al. Photocatalytic activity of synthetic ZnO/WO3 nanocomposites immobilized on a Y-zeolite in removal of gas-phase styrene. J Environ Health Sci Engineer (2021). https://doi.org/10.1007/s40201-020-00594-6

Download citation

Keywords

  • Photocatalytic
  • Nanocomposite
  • Zinc oxide/tungsten trioxide
  • Y-zeolite
  • Styrene