Assessment of bioavailability and mobility of major and trace elements in agricultural soils collected in Port St Johns, Eastern Cape, South Africa using single extraction procedures and pseudo-total digestion



The aim of this study was to evaluate the applicability of ultrasound assisted single extraction and pseudo-total digestion procedures to investigate the bioavailability and mobility of major and trace elements collected from agricultural soil collected in Mzimvubu farmstead area located in Port St Johns, Eastern Cape Province (South Africa).

Materials and methods

The potential metal availability was assessed using complexing agent (ethylenediaminetetraacetic acid (EDTA)), mild (cacium chloride (CaCl2) and ammonium nitrate (NH4NO3)), deionized water and acidic (CH3COOH) extractants with the assistance of ultrasound to evaluate mobility and bioavailability of metals. The ultrasound radiation was used to assist the single extraction of major and trace metals from agricultural soils as well shortening the extraction time. The pseudo-total metal content in agricultural soils was obtained using pseudo-total digestion employing aqua-regia.

Results and discussion

The results obtained using different solvents for single extraction procedures, revealed that higher extraction of Al (256–681 mg kg−1), Fe (172–430 mg kg−1) and Mn (35–136 mg kg−1), was observed compared to other metals. Among the investigated solvents, deionized water, acetic acid and EDTA proved to be the most aggressive extractants. The geo-accumulation index (2–6) and contamination factor (3–6) demonstrated that Fe, Cr, Mn, Co, Cu, Ni, and Zn could pose significant environmental contamination risk.


Based on the results obtained, it can be concluded that the high levels of some studied metals was due to anthropogenic activities.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    Kelepertzis E, Paraskevopoulou V, Argyraki A, Fligos G, Chalkiadaki O. Evaluation of single extraction procedures for the assessment of heavy metal extractability in citrus agricultural soil of a typical Mediterranean environment (Argolida, Greece). J Soils Sediments. 2015;15(11):2265–75.

    CAS  Article  Google Scholar 

  2. 2.

    Milićević T, Relić D, Škrivanj S, Tešić Ž, Popović A. Assessment of major and trace element bioavailability in vineyard soil applying different single extraction procedures and pseudo-total digestion. Chemosphere. 2017;171:284–93.

    Article  CAS  Google Scholar 

  3. 3.

    Rao CRM, Sahuquillo A, Lopez-Sanchez JF. Comparison of single and sequential extraction procedures for the study of rare earth elements remobilisation in different types of soils. Anal Chim Acta. 2010;662(2):128–36.

    CAS  Article  Google Scholar 

  4. 4.

    Shao X, Huang B, Zhao Y, Sun W, Gu Z, Qian W. Impacts of human activities and sampling strategies on soil heavy metal distribution in a rapidly developing region of China. Ecotoxicol Environ Saf. 2014;104:1–8.

    CAS  Article  Google Scholar 

  5. 5.

    Chen F, Du X, Zu Y, Yang L, Wang F. Microwave-assisted method for distillation and dual extraction in obtaining essential oil, proanthocyanidins and polysaccharides by one-pot process from Cinnamomi cortex. Sep Purif Technol. 2016;164:1–11.

    CAS  Article  Google Scholar 

  6. 6.

    Balkhair KS, Ashraf MA. Field accumulation risks of heavy metals in soil and vegetable crop irrigated with sewage water in western region of Saudi Arabia. Saudi J Biol Sci. 2016;23(1):S32–44.

    CAS  Article  Google Scholar 

  7. 7.

    Borrell A, Tornero V, Bhattacharjee D, Aguilar A. Trace element accumulation and trophic relationships in aquatic organisms of the Sundarbans mangrove ecosystem (Bangladesh). Sci Total Environ. 2016;545:414–23.

    Article  CAS  Google Scholar 

  8. 8.

    Sakan S, Popović A, Škrivanj S, Sakan N, Đorđević D. Comparison of single extraction procedures and the application of an index for the assessment of heavy metal bioavailability in river sediments. Environ Sci Pollut Res. 2016;23(21):21485–500.

    CAS  Article  Google Scholar 

  9. 9.

    Eqani SAMAS, Kanwal A, Bhowmik AK, Sohail M, Ullah R, Ali SM, et al. Spatial distribution of dust–bound trace elements in Pakistan and their implications for human exposure. Environ Pollut. 2016;213:213–22.

    CAS  Article  Google Scholar 

  10. 10.

    Dehghani S, Moore F, Keshavarzi B, Beverley AH. Health risk implications of potentially toxic metals in street dust and surface soil of Tehran, Iran. Ecotoxicol Environ Saf. 2017;136:92–103.

    CAS  Article  Google Scholar 

  11. 11.

    Cao S, Duan X, Zhao X, Chen Y, Wang B, Sun C, et al. Health risks of children's cumulative and aggregative exposure to metals and metalloids in a typical urban environment in China. Chemosphere. 2016;147:404–11.

    CAS  Article  Google Scholar 

  12. 12.

    García-Casillas D, García-Salgado S, Quijano MÁ. Accuracy evaluation of ultrasound probe sonication and microwave-assisted extraction systems for rapid single extraction of metals in soils. Anal Methods. 2014;6(20):8403–12.

    Article  CAS  Google Scholar 

  13. 13.

    Kumpiene J, Giagnoni L, Marschner B, Denys S, Mench M, Adriaensen K, et al. Assessment of methods for determining bioavailability of trace elements in soils: a review. Pedosphere. 2017;27(3):389–406.

    Article  Google Scholar 

  14. 14.

    Sahito OM, Afridi HI, Kazi TG, Baig JA. Evaluation of heavy metal bioavailability in soil amended with poultry manure using single and BCR sequential extractions. Int J Environ Anal Chem. 2015;95(11):1066–79.

    CAS  Google Scholar 

  15. 15.

    Sungur A, Soylak M, Yilmaz E, Yilmaz S, Ozcan H. Characterization of heavy metal fractions in agricultural soils by sequential extraction procedure: the relationship between soil properties and heavy metal fractions. Soil Sediment Contam. 2015;24(1):1–15.

    CAS  Article  Google Scholar 

  16. 16.

    Hamdoun H, Leleyter L, Van-Veen E, Coggan J, Basset B, Lemoine M, et al. Comparison of three procedures (single, sequential and kinetic extractions) for mobility assessment of cu, Pb and Zn in harbour sediments. Compt Rendus Geosci. 2015;347(2):94–102.

    Article  Google Scholar 

  17. 17.

    Reis AT, Davidson CM, Vale C, Pereira E. Overview and challenges of mercury fractionation and speciation in soils. TrAC Trends Anal Chem. 2016;82:109–17.

    CAS  Article  Google Scholar 

  18. 18.

    Usero JA, Rosado D, Usero J, Morillo J. Environmental quality in sediments of Cadiz and Algeciras bays based on a weight of evidence approach (southern Spanish coast). Mar Pollut Bull. 2016;110(1):65–74.

    CAS  Article  Google Scholar 

  19. 19.

    Pourabadehei M, Mulligan CN. Resuspension of sediment, a new approach for remediation of contaminated sediment. Environ Pollut. 2016;213:63–75.

    CAS  Article  Google Scholar 

  20. 20.

    Reis AT, Lopes CB, Davidson CM, Duarte AC, Pereira E. Extraction of available and labile fractions of mercury from contaminated soils: the role of operational parameters. Geoderma. 2015;259:213–23.

    Article  CAS  Google Scholar 

  21. 21.

    Caporale AG, Violante A. Chemical processes affecting the mobility of heavy metals and metalloids in soil environments. Curr Poll Rep. 2016;2(1):15–27.

    CAS  Article  Google Scholar 

  22. 22.

    Chen S, Wang X, Niu Y, Sun P, Duan M, Xiao Y, et al. Simple and cost-effective methods for precise analysis of trace element abundances in geological materials with ICP-MS. Sci Bull. 2017;62(4):277–89.

    CAS  Article  Google Scholar 

  23. 23.

    Armenta S, Esteve-Turrillas FA, Garrigues S, de la Guardia M. Green analytical chemistry: the role of green extraction techniques. In: Green extraction techniques: principles, advances and applications, vol. 76. Amsterdam: Elsevier; 2017. p. 1–25.

  24. 24.

    Khan M, Kazi TG, Afridi HI, Bilal M, Akhtar A, Ullah N, et al. Application of ultrasonically modified cloud point extraction method for simultaneous enrichment of cadmium and lead in sera of different types of gallstone patients. Ultrason Sonochem. 2017;39:313–20.

    CAS  Article  Google Scholar 

  25. 25.

    Mohammad SA, Ghanemi K, Larki A. Simultaneous extraction of polycyclic aromatic hydrocarbons through the complete dissolution of solid biological samples in sodium hydroxide/urea/thiourea aqueous solution. J Chromatogr A. 2016;1476:9–18.

    CAS  Article  Google Scholar 

  26. 26.

    Herselman JE, Steyn CE, Fey MV. Baseline concentration of Cd, Co, Cr, Cu, Pb, Ni and Zn in surface soils of South Africa: research in action. S Afr J Sci. 2005;101(11–12):509–12.

    CAS  Google Scholar 

  27. 27.

    Okedeyi OO, Dube S, Awofolu OR, Nindi MM. Assessing the enrichment of heavy metals in surface soil and plant (Digitaria eriantha) around coal-fired power plants in South Africa. Environ Sci Pollut Res Int. 2014;21(6):4686–96.

    CAS  Article  Google Scholar 

  28. 28.

    Matong JM, Nyaba L, Nomngongo PN. Fractionation of trace elements in agricultural soils using ultrasound assisted sequential extraction prior to inductively coupled plasma mass spectrometric determination. Chemosphere. 2016;154:249–57.

    CAS  Article  Google Scholar 

  29. 29.

    Li H, Qian X, Hu W, Wang Y, Gao H. Chemical speciation and human health risk of trace metals in urban street dusts from a metropolitan city, Nanjing, SE China. Sci Total Environ. 2013;456:212–21.

    Article  CAS  Google Scholar 

  30. 30.

    Khademi H, Gabarrón M, Abbaspour A, Martínez-Martínez S, Faz A, Acosta JA. Environmental impact assessment of industrial activities on heavy metals distribution in street dust and soil. Chemosphere. 2019;217:695–705.

    CAS  Article  Google Scholar 

  31. 31.

    Alsbou EME, Al-Khashman OA. Heavy metal concentrations in roadside soil and street dust from Petra region, Jordan. Environ Monit Assess. 2018;190(1):48.

    Article  CAS  Google Scholar 

  32. 32.

    Wu J, Lu J, Li L, Min X, Luo Y. Pollution, ecological-health risks, and sources of heavy metals in soil of the northeastern Qinghai-Tibet plateau. Chemosphere. 2018;201:234–42.

    CAS  Article  Google Scholar 

  33. 33.

    Martínez LLG, Poleto C. Assessment of diffuse pollution associated with metals in urban sediments using the geoaccumulation index (I geo). J Soils Sediments. 2014;14(7):1251–7.

    Article  CAS  Google Scholar 

  34. 34.

    Kim BSM, Angeli JLF, Ferreira PAL, de Mahiques MM, Figueira RCL. Critical evaluation of different methods to calculate the Geoaccumulation index for environmental studies: a new approach for Baixada Santista–southeastern Brazil. Mar Pollut Bull. 2018;127:548–52.

    CAS  Article  Google Scholar 

  35. 35.

    Alshahri F, El-Taher A. Assessment of heavy and trace metals in surface soil nearby an oil refinery, Saudi Arabia, using geoaccumulation and pollution indices. Arch Environ Contam Toxicol. 2018;75(3):390–401.

    CAS  Article  Google Scholar 

  36. 36.

    Islam MS, Ahmed MK, Raknuzzaman M, Habibullah-Al-Mamun M, Islam MK. Heavy metal pollution in surface water and sediment: a preliminary assessment of an urban river in a developing country. Ecol Indic. 2015;48:282–91.

    CAS  Article  Google Scholar 

  37. 37.

    Rahman SH, Khanam D, Adyel TM, Islam MS, Ahsan MA, Akbor MA. Assessment of heavy metal contamination of agricultural soil around Dhaka export processing zone (DEPZ), Bangladesh: implication of seasonal variation and indices. Appl Sci. 2012;2(3):584–601.

    CAS  Article  Google Scholar 

  38. 38.

    Duncan AE, de Vries N, Nyarko KB. Assessment of heavy metal pollution in the sediments of the river Pra and its tributaries. Water Air Soil Pollut. 2018;229(8):272.

    Article  CAS  Google Scholar 

  39. 39.

    Suresh G, Sutharsan P, Ramasamy V, Venkatachalapathy R. Assessment of spatial distribution and potential ecological risk of the heavy metals in relation to granulometric contents of Veeranam lake sediments, India. Ecotoxicol Environ Saf. 2012;84:117–24.

    CAS  Article  Google Scholar 

  40. 40.

    Jiang X, Lu WX, Zhao HQ, Yang QC, Yang ZP. Potential ecological risk assessment and prediction of soil heavy-metal pollution around coal gangue dump. Natural Hazard Earth System Sci. 2014;14(6):1599–610.

    Article  Google Scholar 

  41. 41.

    Douay F, Pelfrêne A, Planque J, Fourrier H, Richard A, Roussel H, et al. Assessment of potential health risk for inhabitants living near a former lead smelter. Part 1: metal concentrations in soils, agricultural crops, and homegrown vegetables. Environ Monit Assess. 2013;185(5):3665–80.

    CAS  Article  Google Scholar 

  42. 42.

    Asensio V, Abreu-Junior CH, da Silva FC, Chitolina JC. Evaluation of chemical extractants to assess metals phytoavailability in Brazilian municipal solid waste composts. Environ Pollut. 2018;243:1235–41.

    CAS  Article  Google Scholar 

  43. 43.

    Alagna V, Bagarello V, Di Prima S, Giordano G, Iovino M. Testing infiltration run effects on the estimated water transmission properties of a sandy-loam soil. Geoderma. 2016;267:24–33.

    Article  Google Scholar 

  44. 44.

    Bvenura C, Afolayan AJ. Heavy metal contamination of vegetables cultivated in home gardens in the eastern cape. S Afr J Sci. 2012;108(9–10):1–6.

    Google Scholar 

  45. 45.

    Mzini LL, Winter K. Analysis of grey-water used for irrigating vegetables and possible effects on soils in the vicinity of Umtata dam, eastern cape. Water SA. 2015;41(1):115–20.

    CAS  Article  Google Scholar 

  46. 46.

    Nyika JM, Onyari EK, Dinka MO, Mishra SB. Heavy metal pollution and mobility in soils within a landfill vicinity: a south African case study. Orient J Chem. 2019;35(4):1286–96.

    CAS  Article  Google Scholar 

  47. 47.

    Heidari S, Oustan S, Neyshabouri MR, Reyhanitabar A. Mobilisation of heavy metals from a contaminated calcareous soil using organic acids. Malaysian J Soil Sci. 2015;19:141–55.

    Google Scholar 

  48. 48.

    Tan D, Long J, Li B, Ding D, Du H, Lei M. Fraction and mobility of antimony and arsenic in three polluted soils: a comparison of single extraction and sequential extraction. Chemosphere. 2018;213:533–40.

    CAS  Article  Google Scholar 

  49. 49.

    García-Salgado S, Quijano MÁ. Rapid metal extractability tests from polluted mining soils by ultrasound probe sonication and microwave-assisted extraction systems. Environ Sci Pollut Res. 2016;23(24):24567–77.

    Article  CAS  Google Scholar 

Download references


The authors wish to thank National Research Foundation (South Africa, Thuthuka grant no. 99270 and student bursary: NRF Collaborative Postgraduate Training Programme, grand number 105294 through Prof Mouri) for financial assistance, the University of Johannesburg and the Analytical Environmental Chemistry and Geology research groups.

Author information



Corresponding author

Correspondence to Philiswa N. Nomngongo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information


(DOC 186 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sihlahla, M., Mouri, H. & Nomngongo, P.N. Assessment of bioavailability and mobility of major and trace elements in agricultural soils collected in Port St Johns, Eastern Cape, South Africa using single extraction procedures and pseudo-total digestion. J Environ Health Sci Engineer (2020).

Download citation


  • Bioavailability
  • Major and trace elements
  • Pseudo-total digestion
  • Single extraction
  • Environmental risk assessment