Graphene quantum dots based on maltose as a high yield photocatalyst for efficient photodegradation of imipramine in wastewater samples



In this work, for the first time, graphene quantum dots (GQDs) based on maltose were fabricated as a new photocatalytic material to the photodegradation of imipramine (as a persistence organic pollutant) under light irradiation.


The synthesized GQDs were characterized by different instrumentation approaches such as X-ray diffraction (XRD), Fourier transform-infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), nitrogen adsorption/desorption, and transmission electron microscopy (TEM). A Box–Behnken design (BBD) and the response surface methodology (RSM) were applied for the optimization of different factors that affect the overall photocatalytic yield.


Under the optimized conditions (pH of the sample solution: 2.0; photocatalyst dosage: 0.1 mg mL−1; UV exposure time: 80 min), the highest achievable reduction efficiency was obtained about 80%. The stability and reusability of the synthesized photocatalytic material were investigated in four reaction cycles (80 min), which showed only a 15% photo-activity loss after the fourth photocatalytic runs.


The proposed method was successfully applied to degrade the mentioned drug in the real wastewater samples by about 70%. Regarding the mentioned advantages by the proposed method, this new kind of photocatalytic material possesses a strong potential for photodegradation of pollutants in industrial wastewater samples.

Graphical abstract

Photodegradation of imipramine using graphene quantum dots based on maltose.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Daughton CG, Ternes TA. Pharmaceuticals and personal care products in the environment: agents of subtle change? Environ Health Perspect. 1999;107(Suppl 6):907–38.

    CAS  Article  Google Scholar 

  2. 2.

    Liu JL, Wong MH. Pharmaceuticals and personal care products (PPCPs): a review on environmental contamination in China. Environ Int. 2013;59:208–24.

    CAS  Article  Google Scholar 

  3. 3.

    Yang B, Zuo J, Li P, Wang K, Yu X, Zhang M. Effective ultrasound electrochemical degradation of biological toxicity and refractory cephalosporin pharmaceutical wastewater. Chem Eng J. 2016;287:30–7.

    CAS  Article  Google Scholar 

  4. 4.

    Verlicchi P, Galletti A, Petrovic M, Barceló D. Hospital effluents as a source of emerging pollutants: an overview of micropollutants and sustainable treatment options. J Hydro. 2010;389(3):416–28.

    CAS  Article  Google Scholar 

  5. 5.

    Sui Q, Wang B, Zhao W, Huang J, Yu G, Deng S, et al. Identification of priority pharmaceuticals in the water environment of China. Chemosphere. 2012;89(3):280–6.

    CAS  Article  Google Scholar 

  6. 6.

    Ohoro CR, Adeniji AO, Okoh AI, Okoh OO. Distribution and chemical analysis of pharmaceuticals and personal care products (PPCPs) in the environmental systems: a review. Int J Environ Res Public Health. 2019;16(17):3026.

    CAS  Article  Google Scholar 

  7. 7.

    Salimi M, Behbahani M, Sobhi HR, Gholami M, Jonidi Jafari A, Rezaei Kalantary R, et al. A new nano-photocatalyst based on Pt and bi co-doped TiO2 for efficient visible-light photo degradation of amoxicillin. New J Chem. 2019;43(3):1562–8.

    CAS  Article  Google Scholar 

  8. 8.

    Daghrir R, Drogui P, Robert D. Modified TiO2 for environmental Photocatalytic applications: a review. Ind Eng Chem Res. 2013;52:3581–99.

    CAS  Article  Google Scholar 

  9. 9.

    Gao B, Chen GZ, Puma GL. Carbon nanotubes/titanium dioxide (CNTs/TiO2) nanocomposites prepared by conventional and novel surfactant wrapping sol–gel methods exhibiting enhanced photocatalytic activity. Appl Catal B: Environmental. 2009;89:503–9.

    CAS  Article  Google Scholar 

  10. 10.

    Cozzoli PD, Comparelli R, Fanizza E, Curri ML, Agostiano A. Photocatalytic activity of organic-capped anatase TiO2 nanocrystals in homogeneous organic solutions. Mat Sci Eng R: C. 2003;23(6):707–13.

    Article  CAS  Google Scholar 

  11. 11.

    Shi W, Shi J, Yu S, Liu P. Ion-exchange synthesis and enhanced visible-light photocatalytic activities of CuSe-ZnSe flower-like nanocomposites. Appl Catal B: Environmental. 2013;138–139:184–90.

  12. 12.

    Zhu M, Du Y, Yang P, Wang X. Donor–acceptor porphyrin functionalized Pt nano-assemblies for artificial photosynthesis: a simple and efficient homogeneous photocatalytic hydrogen production system. Catal Sci Technol. 2013;3(9):2295–302.

    CAS  Article  Google Scholar 

  13. 13.

    Roy P, Chen PC, Periasamy AP, Chen YN, Chang HT. Photoluminescent carbon nanodots: synthesis, physicochemical properties and analytical applications. Mater Today. 2015;18(8):447–58.

    CAS  Article  Google Scholar 

  14. 14.

    Yue J, Zhang K, Yu H, Yu L, Hou T, Chen X, et al. Mechanism insights into tunable photoluminescence of carbon dots by hydroxyl radicals. J Mater Sci. 2019;54:1–11.

    Article  CAS  Google Scholar 

  15. 15.

    Yang ML, Zhang N, Lu KQ, Xu YJ. Insight into the role of size modulation on tuning the band gap and Photocatalytic performance of semiconducting nitrogen-doped Graphene. Langmuir. 2017;33(13):3161–9.

    CAS  Article  Google Scholar 

  16. 16.

    Chen P, Wang F, Chen ZF, Zhang Q, Su Y, Shen L, et al. Study on the photocatalytic mechanism and detoxicity of gemfibrozil by a sunlight-driven TiO2/carbon dots photocatalyst: the significant roles of reactive oxygen species. Appl Catal B: Environmental. 2016;204.

  17. 17.

    Tian P, Tang L, Teng KS, Lau SP. Graphene quantum dots from chemistry to applications. Mater Today Chem. 2018;10:221–58.

    CAS  Article  Google Scholar 

  18. 18.

    Mashkani M, Mehdinia A, Jabbari A, Bide Y, Nabid MR. Preconcentration and extraction of lead ions in vegetable and water samples by N-doped carbon quantum dot conjugated with Fe3O4 as a green and facial adsorbent. Food Chem. 2018;239:1019–26.

    CAS  Article  Google Scholar 

  19. 19.

    Rahbar M, Mehrzad M, Behpour M, Mohammadi-Aghdam S, Ashrafi M. S, N co-doped carbon quantum dots/TiO2 nanocomposite as highly efficient visible light photocatalyst. Nanotechnology. 2019;30(50):505702.

  20. 20.

    Miao R, Luo Z, Zhong W, Chen SY, Jiang T, Dutta B, et al. Mesoporous TiO2 modified with carbon quantum dots as a high-performance visible light photocatalyst. Appl Catal B: Environmental. 2016;189:26–38.

    CAS  Article  Google Scholar 

  21. 21.

    Sun X, Li H-J, Ou N, Lyu B, Gui B, Tian S, et al. Visible-light driven TiO2 Photocatalyst coated with Graphene quantum dots of tunable nitrogen doping. Molecules. 2019;24:344.

    Article  CAS  Google Scholar 

  22. 22.

    Ghasemi Z, Younesi H, Zinatizadeh AA. Preparation, characterization and photocatalytic application of TiO2/Fe-ZSM-5 nanocomposite for the treatment of petroleum refinery wastewater: optimization of process parameters by response surface methodology. Chemosphere. 2016;159:552–64.

    CAS  Article  Google Scholar 

  23. 23.

    Bhattacharya K, Deb P. Hybrid nanostructured C-dot decorated Fe3O4 electrode materials for superior electrochemical energy storage performance. Dalton Trans. 2015;44(19):9221–9.

    CAS  Article  Google Scholar 

  24. 24.

    Guo HL, Wang XF, Qian QY, Wang FB, Xia XH. A green approach to the synthesis of graphene nanosheets. ACS Nano. 2009;3(9):2653–9.

    CAS  Article  Google Scholar 

  25. 25.

    Peng J, Gao W, Gupta BK, Liu Z, Romero-Aburto R, Ge L, et al. Graphene quantum dots derived from carbon fibers. Nano Lett. 2012;12(2):844–9.

    CAS  Article  Google Scholar 

  26. 26.

    Pan D, Zhang J, Li Z, Wu M. Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots. Adv Mater. 2010;22(6):734–8.

    Article  CAS  Google Scholar 

  27. 27.

    Tang L, Ji R, Cao X, Lin J, Jiang H, Li X, et al. Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots. ACS Nano. 2012;6(6):5102–10.

    CAS  Article  Google Scholar 

  28. 28.

    Qian F, Li X, Tang L, Lai SK, Lu C, Lau SP. Potassium doping: tuning the optical properties of graphene quantum dots. AIP Adv. 2016;6(7):075116.

    Article  CAS  Google Scholar 

  29. 29.

    Lai SK, Xie C, Teng KS, Li Y, Tan F, Yan F, et al. Polymeric carbon nitride Nanosheets/Graphene hybrid phototransistors with high Responsivity. Adv Opt Mater. 2016;4(4):555–61.

    CAS  Article  Google Scholar 

  30. 30.

    Lai SK, Tang L, Hui YY, Luk CM, Lau SP. A deep ultraviolet to near-infrared photoresponse from glucose-derived graphene oxide. J Mater Chem C. 2014;2(34):6971–7.

    CAS  Article  Google Scholar 

  31. 31.

    Du X, Jiang D, Liu Q, Zhu G, Mao H, Wang K. Fabrication of graphene oxide decorated with nitrogen-doped graphene quantum dots and its enhanced electrochemiluminescence for ultrasensitive detection of pentachlorophenol. Analyst. 2015;140(4):1253–9.

    CAS  Article  Google Scholar 

  32. 32.

    Li L, Wu G, Yang G, Peng J, Zhao J, Zhu JJ. Focusing on luminescent graphene quantum dots: current status and future perspectives. Nanoscale. 2013;5(10):4015–39.

    CAS  Article  Google Scholar 

  33. 33.

    Mewada A, Pandey S, Thakur M, Jadhav D, Sharon M. Swarming carbon dots for folic acid mediated delivery of doxorubicin and biological imaging. J Mater Chem B. 2014;2(6):698–705.

    CAS  Article  Google Scholar 

  34. 34.

    Yao N, Wu C, Jia L, Han S, Chi B, Pu J, et al. Simple synthesis and characterization of mesoporous (N, S)-codoped TiO2 with enhanced visible-light photocatalytic activity. Mater Sci Eng C. 2012;38(2):1671–5.

    CAS  Google Scholar 

  35. 35.

    Polarz S, Smarsly B. Nanoporous materials. J nanosci nanotechno. 2002;2:581–612.

    CAS  Article  Google Scholar 

  36. 36.

    Gu W, Zhang W, Li X, Zhu H, Wei J, Li Z, et al. Graphene sheets from worm-like exfoliated graphite. J Mater Chem. 2009;19(21):3367–9.

    CAS  Article  Google Scholar 

  37. 37.

    Xie H, Hou C, Wang H, Zhang Q, Li Y. S, N Co-Doped Graphene Quantum Dot/TiO2 Composites for Efficient Photocatalytic Hydrogen Generation. Nanoscale Res Lett. 2017;12(1):400.

  38. 38.

    Yang P, Zhou L, Zhang S, Wan N, Pan W, Shen W. Facile synthesis and photoluminescence mechanism of graphene quantum dots. J Appl Phys. 2014;116:244306–1-7.

  39. 39.

    Calza P, Sakkas VA, Villioti A, Massolino C, Boti V, Pelizzetti E, et al. Multivariate experimental design for the photocatalytic degradation of imipramine: determination of the reaction pathway and identification of intermediate products. Appl Catal B: Environmental. 2008;84(3):379–88.

    CAS  Article  Google Scholar 

  40. 40.

    Saien J, Ansari M, Soleymani AR, Taghavinia N. Photocatalytic decomposition of direct red 16 and kinetics analysis in a conic body packed bed reactor with nanostructure titania coated Raschig rings. Chem Eng J. 2009;151(1–3):295–301.

    CAS  Article  Google Scholar 

  41. 41.

    Rubio-Clemente A, Torres-Palma RA, Penuela GA. Removal of polycyclic aromatic hydrocarbons in aqueous environment by chemical treatments: a review. Sci Total Environ. 2014;478:201–25.

    CAS  Article  Google Scholar 

  42. 42.

    Khodadoust S, Sheini A, Armand N. Photocatalytic degradation of monoethanolamine in wastewater using nanosized TiO2 loaded on clinoptilolite. Spectrochim Acta A Mol Biomol Spectrosc. 2012;92:91–5.

    CAS  Article  Google Scholar 

  43. 43.

    Ahmed S, Rasul MG, Martens WN, Brown R, Hashib MA. Heterogeneous photocatalytic degradation of phenols in wastewater: a review on current status and developments. Desalination. 2010;261(1):3–18.

    CAS  Article  Google Scholar 

  44. 44.

    Chou JC, Liao LP. Study on pH at the point of zero charge of TiO2 pH ion-sensitive field effect transistor made by the sputtering method. Thin Solid Films. 2005;476(1):157–61.

    CAS  Article  Google Scholar 

  45. 45.

    Evgenidou E, Fytianos K, Poulios I. Photocatlytic oxidation of dimethoate in aqueous solutions. J Photoch Photobio A: Chem. 2005;175:29–38.

    CAS  Article  Google Scholar 

  46. 46.

    Javanbakht S, Shaabani A. Encapsulation of graphene quantum dot-crosslinked chitosan by carboxymethylcellulose hydrogel beads as a pH-responsive bio-nanocomposite for the oral delivery agent. Int J Biol Macromol. 2019;123:389–97.

    CAS  Article  Google Scholar 

  47. 47.

    Sarkar S, Das R, Choi H, Bhattacharjee C. Involvement of process parameters and various modes of application of TiO2 nanoparticles in heterogeneous photocatalysis of pharmaceutical wastes – a short review. RSC Adv. 2014;4(100):57250–66.

    CAS  Article  Google Scholar 

  48. 48.

    Gomez S, Marchena CL, Pizzio L, Pierella L. Preparation and characterization of TiO2/HZSM-11 zeolite for photodegradation of dichlorvos in aqueous solution. J Hazard Mater. 2013;258–259:19–26.

Download references


This research was supported financially by Faculty of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Iran.

Author information



Corresponding author

Correspondence to Ali Mashinchian-Moradi.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hatefi, R., Mashinchian-Moradi, A., Younesi, H. et al. Graphene quantum dots based on maltose as a high yield photocatalyst for efficient photodegradation of imipramine in wastewater samples. J Environ Health Sci Engineer (2020).

Download citation


  • Graphene quantum dot
  • Imipramine
  • Maltose
  • Photocatalyst
  • Photodegradation
  • Wastewater treatment