Dye removal from water and wastewater by nanosized metal oxides - modified activated carbon: a review on recent researches

Abstract

The conventional water and wastewater treatment methods are unable to provide up-to-data organized standards for drinking water and discharging effluents into natural ecosystems. Therefore, developing advanced and cost-effective methods to achieve published standards for water and wastewater and population needs are nowadays necessity. The important parts of this article are providing literature information about dyes and their effects on the environment and human health, adsorption properties and mechanism, adsorbent characteristics, and recent information on various aspects of modified activated carbons with nanosized metal oxides (AC- NMOs) in the removal of dyes. This review also summarized the effect of main environmental and operational parameters such as adsorbent dosage, pH, initial dye concentration, contact time, and temperature on the dye adsorption using AC-NMOs. Furthermore, the applied isotherm and kinetic models have been discussed.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Masoudian N, Rajabi M, Ghaedi M. Titanium oxide nanoparticles loaded onto activated carbon prepared from bio-waste watermelon rind for the efficient ultrasonic-assisted adsorption of Congo red and phenol red dyes from wastewaters. Polyhedron. 2019;173:105-114.

  2. 2.

    Joshi S, Garg VK, Kataria N. Kadirvelu K. Applications of Fe3O4@ AC nanoparticles for dye removal from simulated wastewater. Chemosphere 2019; 236: 124280–124312.

  3. 3.

    Yosofi Y, Almasi A, Mousavi SA, Mizzouri NS. Decolorization of methylene blue from aqueous solution using ultrasonic/ Fenton like process. Int J Eng Sci. 2016;29(11): 1582-1586.

    CAS  Google Scholar 

  4. 4.

    Pirkarami A, Olya ME. Removal of dye from industrial wastewater with an emphasis on improving economic efficiency and degradation mechanism. J Saudi Chem Soc. 2017;21: S179-S186.

    CAS  Article  Google Scholar 

  5. 5.

    Bhanuprakash M, Belagali SL. Study of adsorption phenomena by using almond husk for removal of aqueous dyes. Curr World Environ. 2017;12(1):80–88.

    Article  Google Scholar 

  6. 6.

    Sartape AS, Mandhare AM, Jadhav VV, Raut PD, Anuse MA, Kolekar SS. Removal of malachite green dye from aqueous solution with adsorption technique using Limonia acidissima (wood apple) shell as low cost adsorbent. Arab J Chem. 2017;10:S3229-S3238.

    CAS  Article  Google Scholar 

  7. 7.

    Hajati S, Ghaedi M, Mahmoudi Z, Sahraei R. SnO2 nanoparticle-loaded activated carbon for simultaneous removal of acid yellow 41 and sunset yellow; derivative spectrophotometric, artificial neural network and optimization approach. Spectrochim Acta A. 2015;150:1002-1012.

    CAS  Article  Google Scholar 

  8. 8.

    Singh R, Sinha MK, Purkait MK. Stimuli responsive mixed matrix Polysulfone ultrafiltration membrane for humic acid and Photocatalytic dye removal applications. Sep Purif Technol. 2020;250:117247.

    CAS  Article  Google Scholar 

  9. 9.

    Joseph J, Radhakrishnan RC, Johnson JK, Joy SP, Thomas J. Ion-exchange mediated removal of cationic dye-stuffs from water using ammonium phosphomolybdate. Mater Chem Phys. 2020;242:122488.

    CAS  Article  Google Scholar 

  10. 10.

    Mariah GK, Pak KS. Removal of brilliant green dye from aqueous solution by electrocoagulation using response surface methodology. Mater Today: Proc. 2020;20:488–492.

    CAS  Google Scholar 

  11. 11.

    Deshannavar UB, Singa PK, Gaonkar D, Gayathri A, Patil A, Malade LV. Removal of acid violet 49 and acid red 88 dyes from aqueous solutions using advanced oxidation process. Mater Today: Proc. 2020;24:1011–119.

  12. 12.

    Moghaddas SM, Elahi B, Javanbakht V. Biosynthesis of pure zinc oxide nanoparticles using quince seed mucilage for photocatalytic dye degradation. J Alloys Compd. 2020;821:153519.

    Article  CAS  Google Scholar 

  13. 13.

    Shabaan OA, Jahin HS, Mohamed GG. Removal of anionic and cationic dyes from wastewater by adsorption using multiwall carbon nanotubes. Arab J Chem. 2020;13(3):4797–4810.

    CAS  Article  Google Scholar 

  14. 14.

    Beluci ND, Mateus GA, Miyashiro CS, Homem NC, Gomes RG, Fagundes-Klen MR, et al. Hybrid treatment of coagulation/flocculation process followed by ultrafiltration in TIO2-modified membranes to improve the removal of reactive black 5 dye. Sci Total Environ. 2019;664:222–229.

    CAS  Article  Google Scholar 

  15. 15.

    Chandanshive VV, Kadam SK, Khandare RV, Kurade MB, Jeon BH, Jadhav JP, et al. In situ phytoremediation of dyes from textile wastewater using garden ornamental plants, effect on soil quality and plant growth. Chemosphere. 2018;210:968–976.

    CAS  Article  Google Scholar 

  16. 16.

    Almasi A, Amirian F, Mohammadi M, Yari AR, Dargahi A, Ahmadidoust G. Evaluation low cost adsorbent of walnut bark granule for methylene blue dye removal from aqueous environments. Arch Hyg Sci. 2018;7(2):113–118.

    CAS  Google Scholar 

  17. 17.

    Elhadiri N, Bouchdoug M, Benchanaa M, Boussetta A. Optimization of preparation conditions of novel adsorbent from sugar scum using response surface methodology for removal of methylene blue. J Chem. 2018;2018:1–10.

    Google Scholar 

  18. 18.

    Demiral H, Demiral I, Karabacakoğlu B, Tümsek F. Adsorption of textile dye onto activated carbon prepared from industrial waste by ZnCl2 activation. J Int Environ Appl Sci. 2008;3(5):381–389.

    CAS  Google Scholar 

  19. 19.

    Al-Azabi K, Al-Marog S, Abukrain A, Sulyman M. Equilibrium, isotherm studies of dye adsorption onto Orange Peel powder. J Chem Res. 2018;3(1):45–59.

    CAS  Google Scholar 

  20. 20.

    Juang RS, Yei YC, Liao CS, Lin KS, Lu HC, Wang SF, et al. Synthesis of magnetic Fe3O4/activated carbon nanocomposites with high surface area as recoverable adsorbents. J Taiwan Inst Chem Eng. 2018;90:51–60.

    CAS  Article  Google Scholar 

  21. 21.

    Pathania D, Sharma S, Singh P. Removal of methylene blue by adsorption onto activated carbon developed from Ficus carica bast. Arab J Chem. 2017;10:S1445–s1451.

  22. 22.

    Danish M, Ahmad T, Nadhari WN, Ahmad M, Khanday WA, Ziyang L, et al. Optimization of banana trunk-activated carbon production for methylene blue-contaminated water treatment. Appl Water Sci. 2018;8(1):9.

    Article  CAS  Google Scholar 

  23. 23.

    Gokce Y, Aktas Z. Nitric acid modification of activated carbon produced from waste tea and adsorption of methylene blue and phenol. Appl Surf Sci. 2014;313:352–359.

    CAS  Article  Google Scholar 

  24. 24.

    Zhang S, Wang Z, Zhang Y, Pan H, Tao L. Adsorption of methylene blue on Organosolv Lignin from Rice straw. Procedia Environ Sci. 2016;31:3–11.

    Article  CAS  Google Scholar 

  25. 25.

    Bello OS. Adsorptive removal of malachite green with activated carbon prepared from oil palm fruit fibre by KOH activation and CO2 gasification. S Afr J Chem. 2013;66:32–41.

    CAS  Google Scholar 

  26. 26.

    Bello OS, Ahmad MA. Adsorption of dyes from aqueous solution using chemical activated mango peels. in 2nd International Conference on Environmental Science and Technology (ICEST). 2011;2:108-113.

  27. 27.

    Nayeri D, Mousavi SA, Fatahi M, Almasi A, Khodadoost F. Dataset on adsorption of methylene blue from aqueous solution onto activated carbon obtained from low cost wastes by chemical-thermal activation–modelling using response surface methodology. Data in brief. 2019;25:104036.

    Article  Google Scholar 

  28. 28.

    Bello OS, Ahmad MA. Coconut (Cocos nucifera) shell based activated carbon for the removal of malachite green dye from aqueous solutions. Sep Sci Technol. 2012;47(6):903–912.

    CAS  Article  Google Scholar 

  29. 29.

    Shahbazi D, Mousavi SA, Nayeri D. Low-cost activated carbon: characterization, decolorization, modeling, optimization and kinetics. Int J Environ Sci Te. 2020; 17(1):3935–3946.

  30. 30.

    Yu L, Luo Y-m. The adsorption mechanism of anionic and cationic dyes by Jerusalem artichoke stalk-based mesoporous activated carbon. J Environ Chem Eng. 2014;2(1):220–229.

    CAS  Article  Google Scholar 

  31. 31.

    Fernandez ME, Nunell GV, Bonelli PR, Cukierman AL. Activated carbon developed from orange peels: batch and dynamic competitive adsorption of basic dyes. Ind Crop Prod. 2014;62:437–445.

    CAS  Article  Google Scholar 

  32. 32.

    Mousavi SA, Mehralian M, Khashij M, Parvaneh S. Methylene blue removal from aqueous solutions by activated carbon prepared from N. microphyllum (AC-NM): RSM analysis, isotherms and kinetic studies. Global Nest J. 2017;19(4):697–705.

    CAS  Article  Google Scholar 

  33. 33.

    Ikudayisi VA, Anebi PO, Ugbe FA. Biosorption of an anionic dye, eosin yellow onto pineapple peels: isotherm and thermodynamic study. Inter Ann Sci. 2018;4(1):14–19.

    Article  Google Scholar 

  34. 34.

    Ashrafi SD, Kamani H, Soheil Arezomand H, Yousefi N, Mahvi AH. Optimization and modeling of process variables for adsorption of basic blue 41 on NaOH-modified rice husk using response surface methodology. Desalin Water Treat. 2016;57(30):14051–14059.

    CAS  Article  Google Scholar 

  35. 35.

    Almasi A, Rostamkhani Z, Mousavi SA. Adsorption of reactive red 2 using activated carbon prepared from walnut shell: batch and fixed bed studies. Desalin Water Treat. 2017;79:356–367.

    CAS  Article  Google Scholar 

  36. 36.

    Chen Q, Tang Z, Li H, Wu M, Zhao Q, Pan B. An electron-scale comparative study on the adsorption of six divalent heavy metal cations on MnFe2O4@ CAC hybrid: experimental and DFT investigations. Chem Eng J. 2020;381:122656.

    CAS  Article  Google Scholar 

  37. 37.

    Mehdizadeh S, Sadjadi S, Ahmadi SJ, Outokesh M. Removal of heavy metals from aqueous solution using platinum nanopartcles/zeolite-4A. J Environ Health Sci Eng. 2014;12(1):7.

    Article  CAS  Google Scholar 

  38. 38.

    Nia RH, Ghaedi M, Ghaedi AM. Modeling of reactive orange 12 (RO 12) adsorption onto gold nanoparticle-activated carbon using artificial neural network optimization based on an imperialist competitive algorithm. J Mol Liq. 2014;195:219–29.

    Article  CAS  Google Scholar 

  39. 39.

    Reza RA, Ahmaruzzaman M. A novel synthesis of Fe2O3@activated carbon composite and its exploitation for the elimination of carcinogenic textile dye from an aqueous phase. RSC Adv. 2015;5(14):10575–10586.

    CAS  Article  Google Scholar 

  40. 40.

    Zhu HY, Fu YQ, Jiang R, Jiang JH, Xiao L, Zeng GM, et al. Adsorption removal of Congo red onto magnetic cellulose/Fe3O4/activated carbon composite: equilibrium, kinetic and thermodynamic studies. Chem Eng J. 2011;173(2):494–502.

    CAS  Article  Google Scholar 

  41. 41.

    Singh M, Dosanjh HS, Singh H. Surface modified spinel cobalt ferrite nanoparticles for cationic dye removal: kinetics and thermodynamics studies. J Water Process Eng. 2016;11:152–161.

    Article  Google Scholar 

  42. 42.

    Bagheri S, Aghaei H, Monajjemi M, Ghaedi M, Zare K. Novel Au-Fe3O4 NPs Loaded on Activated Carbon as a Green and High Efficient Adsorbent for Removal of Dyes from Aqueous Solutions: Application of Ultrasound Wave and Optimization. Eurasian J Analytical Chem. 2018; 13(3):em23.

  43. 43.

    Livani MJ, Ghorbani M. Fabrication of NiFe2O4 magnetic nanoparticles loaded on activated carbon as novel nanoadsorbent for direct red 31 and direct blue 78 adsorption. Environ Technol. 2018;39(23):2977–2993.

    CAS  Article  Google Scholar 

  44. 44.

    Saini P, Sharma R, Pant RP, Kotnala RK. Ultrafast adsorption of organic dyes by activated-carbon@ Fe3O4 nanoscale composites: An effective solution for water purification. Indian J Pure AP Phy. 2018;56(3):187–195.

    Google Scholar 

  45. 45.

    Astuti W, Sulistyaningsih T, Kusumastuti E, Thomas GY, Kusnadi RY. Thermal conversion of pineapple crown leaf waste to magnetized activated carbon for dye removal. Bioresour Technol. 2019;287:121426.

    CAS  Article  Google Scholar 

  46. 46.

    Jia Z, Peng K, Li Y, Zhu R. Preparation and application of novel magnetically separable γ-Fe2O3/activated carbon sphere adsorbent. Mater Sci Eng B. 2011;176(11):861–865.

    CAS  Article  Google Scholar 

  47. 47.

    Ghaedi M, Ansari A, Habibi MH, Asghari AR. Removal of malachite green from aqueous solution by zinc oxide nanoparticle loaded on activated carbon: kinetics and isotherm study. J Ind Eng Chem. 2014;20(1):17–28.

    CAS  Article  Google Scholar 

  48. 48.

    Nekouei F, Nekouei S, Tyagi I, Gupta VK. Kinetic, thermodynamic and isotherm studies for acid blue 129 removal from liquids using copper oxide nanoparticle-modified activated carbon as a novel adsorbent. J Mol Liq. 2015;201:124–133.

    CAS  Article  Google Scholar 

  49. 49.

    Shamsizadeh A, Ghaedi M, Ansari A, Azizian S, Purkait MK. Tin oxide nanoparticle loaded on activated carbon as new adsorbent for efficient removal of malachite green-oxalate: non-linear kinetics and isotherm study. J Mol Liq. 2014;195:212–218.

    CAS  Article  Google Scholar 

  50. 50.

    Ghaedi M, Ghaedi AM, Mirtamizdoust B, Agarwal S, Gupta VK. Simple and facile sonochemical synthesis of lead oxide nanoparticles loaded activated carbon and its application for methyl orange removal from aqueous phase. J Mol Liq. 2016;213:48–57.

    CAS  Article  Google Scholar 

  51. 51.

    Roosta M, Ghaedi M, Sahraei R, Purkait MK. Ultrasonic assisted removal of sunset yellow from aqueous solution by zinc hydroxide nanoparticle loaded activated carbon: optimized experimental design. Mater Sci Eng C Mater Biol Appl. 2015;52:82–89.

    CAS  Article  Google Scholar 

  52. 52.

    Myneni VR, Kala NS, Kanidarapu NR, Vangalapati M. Modelling and optimization of methylene blue adsorption onto magnesium oxide nanoparticles loaded onto activated carbon (MgONP-AC): response surface methodology and artificial neural networks. Mater Today: Proc. 2019;18:4932–4941.

    CAS  Google Scholar 

  53. 53.

    Pargoletti E, Pifferi V, Falciola L, Facchinetti G, Depaolini AR, Davoli E, et al. A detailed investigation of MnO2 nanorods to be grown onto activated carbon. High efficiency towards aqueous methyl orange adsorption/degradation. Appl Surf Sci. 2019;472:118–126.

    CAS  Article  Google Scholar 

  54. 54.

    Nekouei F, Noorizadeh H, Nekouei S, Asif M, Tyagi I, Agarwal S, et al. Removal of malachite green from aqueous solutions by cuprous iodide–cupric oxide nano-composite loaded on activated carbon as a new sorbent for solid phase extraction: isotherm, kinetics and thermodynamic studies. J Mol Liq. 2016;213:360–368.

    CAS  Article  Google Scholar 

  55. 55.

    Dil EA, Ghaedi M, Asfaram A, Mehrabi F, Bazrafshan AA, Tayebi L. Synthesis and application of Ce-doped TiO2 nanoparticles loaded on activated carbon for ultrasound-assisted adsorption of basic red 46 dye. Ultrason Sonochem. 2019;58:104702.

    Article  CAS  Google Scholar 

  56. 56.

    Prajapati AK, Mondal MK. Comprehensive kinetic and mass transfer modeling for methylene blue dye adsorption onto CuO nanoparticles loaded on nanoporous activated carbon prepared from waste coconut shell. J Mol Liq. 2020;307:112949.

    CAS  Article  Google Scholar 

  57. 57.

    Tan KA, Morad N, Teng TT, Norli I, Panneerselvam P. Removal of cationic dye by magnetic nanoparticle (Fe3O4) impregnated onto activated maize cob powder and kinetic study of dye waste adsorption. APCBEE Procedia. 2012;1:83–89.

    CAS  Article  Google Scholar 

  58. 58.

    Jamshidi B, Ehrampoush MH, Dehvari M. Utilization of olive kernel ash in removal of RB19 from synthetic textile wastewater. J environ treat. 2013;1(3):151–157.

    Google Scholar 

  59. 59.

    Sohrabi MR, Khavaran A, Shariati S, Shariati S. Removal of Carmoisine edible dye by Fenton and photo Fenton processes using Taguchi orthogonal array design. Arab J Chem. 2017;10:S3523–S3531.

    CAS  Article  Google Scholar 

  60. 60.

    Chequer FD, de Oliveira GA, Ferraz EA, Cardoso JC, Zanoni MB, de Oliveira DP. Textile dyes: dyeing process and environmental impact. Eco-friendly Textile Dyeing Finishing. 2013;6:151–176.

    Google Scholar 

  61. 61.

    Lu L, Zhao M, Liang SC, Zhao LY, Li DB, Zhang BB. Production and synthetic dyes decolourization capacity of a recombinant laccase from Pichia pastoris. J Appl Microbiol. 2009;107(4):1149–1156.

    CAS  Article  Google Scholar 

  62. 62.

    Group IMW. General Introduction to the Chemistry of Dyes. World Health Organization, Some Aromatic Amines, Organic Dyes, and Related Exposures, 2010: p 55–67.

  63. 63.

    Elwakeel KZ, Elgarahy AM, Elshoubaky GA, Mohammad SH. Microwave assist sorption of crystal violet and Congo red dyes onto amphoteric sorbent based on upcycled Sepia shells. J Environ Health Sci Eng. 2020:18(1):35–50.

  64. 64.

    Regti A, Laamari MR, Stiriba SE, El Haddad M. Potential use of activated carbon derived from Persea species under alkaline conditions for removing cationic dye from wastewaters. J Assoc Arab Univ Basic Appl Sci. 2018;24(1):10–18.

    Google Scholar 

  65. 65.

    Jethave G, Fegade U, Rathod R, Pawar J. Dye pollutants removal from waste water using metal oxide nanoparticle embedded activated carbon: An immobilization study. J Disper Sci Technol 2018; 40(4):563-573.

  66. 66.

    Hassan W, Farooq U, Ahmad M, Athar M, Khan MA. Potential biosorbent, Haloxylon recurvum plant stems, for the removal of methylene blue dye. Arab J Chem. 2017;10: S1512-S1522.

    CAS  Article  Google Scholar 

  67. 67.

    Ghasemi M, Mashhadi S, Asif M, Tyagi I, Agarwal S, Gupta VK. Microwave-assisted synthesis of tetraethylenepentamine functionalized activated carbon with high adsorption capacity for malachite green dye. J Mol Liq. 2016;213:317–325.

    CAS  Article  Google Scholar 

  68. 68.

    de Souza TN, de Carvalho SM, Vieira MG, da Silva MG, Brasil DD. Adsorption of basic dyes onto activated carbon: experimental and theoretical investigation of chemical reactivity of basic dyes using DFT-based descriptors. Appl Surf Sci. 2018;448:662–670.

    Article  CAS  Google Scholar 

  69. 69.

    Fayazi M, Ghanei-Motlagh M, Taher MA. The adsorption of basic dye (alizarin red S) from aqueous solution onto activated carbon/γ-Fe2O3 nano-composite: kinetic and equilibrium studies. Mater Sci Semicond Process. 2015;40:35–43.

    CAS  Article  Google Scholar 

  70. 70.

    Ghaedi M, Negintaji G, Marahel F. Solid phase extraction and removal of brilliant green dye on zinc oxide nanoparticles loaded on activated carbon: new kinetic model and thermodynamic evaluation. J Ind Eng Chem. 2014;20(4):1444–1452.

    CAS  Article  Google Scholar 

  71. 71.

    Yang XQ, Zhao XX, Liu CY, Zheng Y, Qian SJ. Decolorization of azo, triphenylmethane and anthraquinone dyes by a newly isolated Trametes sp. SQ01 and its laccase. Process Biochem. 2009;44(10):1185-1189.

    CAS  Article  Google Scholar 

  72. 72.

    Rauf MA, Ashraf SS. Survey of recent trends in biochemically assisted degradation of dyes. Chem Eng J. 2012;209:520–530.

    CAS  Article  Google Scholar 

  73. 73.

    Ranjithkumar V, Sangeetha S, Vairam S. Synthesis of magnetic activated carbon/α-Fe2O3 nanocomposite and its application in the removal of acid yellow 17 dye from water. J Hazard Mater. 2014;273:127–135.

    CAS  Article  Google Scholar 

  74. 74.

    Mehrabian F, Kamani H, Safari GH, Asgari G, Ashrafi SD. Direct blue 71 removal from aqueous solution by laccase-mediated system. A dataset Data in brief. 2018;19:437–443.

    Article  Google Scholar 

  75. 75.

    de Souza SM, Bonilla KA, Souza AA. Removal of COD and color from hydrolyzed textile azo dye by combined ozonation and biological treatment. J Hazard Mater. 2010;179(1–3):35–42.

    Article  CAS  Google Scholar 

  76. 76.

    Salazar R, Ureta-Zañartu MS, González-Vargas C. Do Nascimento Brito C, Martinez-Huitle CA. Electrochemical degradation of industrial textile dye disperse yellow 3: role of electrocatalytic material and experimental conditions on the catalytic production of oxidants and oxidation pathway. Chemosphere. 2018;198:21–29.

    CAS  Article  Google Scholar 

  77. 77.

    Roya M, Mostafa F, Mohammad J. Synthesis of ZnO-magnetic/ZSM-5 and its application for removal of disperse blue 56 from contaminated water. Chem Eng Process. 2020;153:107969.

    Article  CAS  Google Scholar 

  78. 78.

    Ferraz ER, Oliveira GA, Grando MD, Lizier TM, Zanoni MV, Oliveira DP. Photoelectrocatalysis based on Ti/TiO2 nanotubes removes toxic properties of the azo dyes disperse red 1, disperse red 13 and disperse Orange 1 from aqueous chloride samples. J Environ Manag. 2013;124:108–114.

    CAS  Article  Google Scholar 

  79. 79.

    Neamtu M, Yediler A, Siminiceanu I, Macoveanu M, Kettrup A. Decolorization of disperse red 354 azo dye in water by several oxidation processes—a comparative study. Dyes Pigments. 2004;60(1):61–68.

    CAS  Article  Google Scholar 

  80. 80.

    Dhiman N, Shukla SP, Mohan D, Kisku GC, Patnaik S. Comprehensive remediation study of disperse dyes in wastewater using cenospheres nanosyntactic foam. J Clean Prod. 2018;182:206–216.

    Article  CAS  Google Scholar 

  81. 81.

    Seidmohammadi A, Asgari G, Leili M, Dargahi A, Mobarakian A. Effectiveness of Quercus Branti activated carbon in removal of methylene blue from aqueous solutions. Arch Hyg Sci. 2015;4(4):217–225.

    Google Scholar 

  82. 82.

    Ghaedi M, Nasiri KS. Removal of methylene blue from aqueous solution by wood millet carbon optimization using response surface methodology. Spectrochim Acta A Mol Biomol Spectrosc. 2015;136 Pt B:141–148.

    Article  CAS  Google Scholar 

  83. 83.

    Mehrabi F, Vafaei A, Ghaedi M, Ghaedi AM, Dil EA, Asfaram A. Ultrasound assisted extraction of Maxilon red GRL dye from water samples using cobalt ferrite nanoparticles loaded on activated carbon as sorbent: optimization and modeling. Ultrason Sonochem. 2017;38:672–680.

    CAS  Article  Google Scholar 

  84. 84.

    Ghaedi M, Daneshfar A, Ahmadi A, Momeni MS. Artificial neural network-genetic algorithm based optimization for the adsorption of phenol red (PR) onto gold and titanium dioxide nanoparticles loaded on activated carbon. J Ind Eng Chem. 2015;21:587–598.

    CAS  Article  Google Scholar 

  85. 85.

    Markandeya S, Shukla P. Mohan D toxicity of disperse dyes and its removal from wastewater using various adsorbents: a review. Environ Toxicol. 2017;11:72–89.

    CAS  Article  Google Scholar 

  86. 86.

    Heibati B, Rodriguez-Couto S, Al-Ghouti MA, Asif M, Tyagi I, Agarwal S, et al. Kinetics and thermodynamics of enhanced adsorption of the dye AR 18 using activated carbons prepared from walnut and poplar woods. J Mol Liq. 2015;208:99–105.

    CAS  Article  Google Scholar 

  87. 87.

    Daoud M, Benturki O, Kecira Z, Girods P, Donnot A. Removal of reactive dye (BEZAKTIV red S-MAX) from aqueous solution by adsorption onto activated carbons prepared from date palm rachis and jujube stones. J Mol Liq. 2017;243:799–809.

    CAS  Article  Google Scholar 

  88. 88.

    Chang M, Shih YH. Synthesis and application of magnetic iron oxide nanoparticles on the removal of reactive black 5: reaction mechanism, temperature and pH effects. J Environ Manag. 2018;224:235–242.

    CAS  Article  Google Scholar 

  89. 89.

    Ashrafi SD, Rezaei S, Forootanfar H, Mahvi AH, Faramarzi MA. The enzymatic decolorization and detoxification of synthetic dyes by the laccase from a soil-isolated ascomycete. Paraconiothyrium Variabile Int Biodeter Biodegr. 2013;85:173–181.

    CAS  Article  Google Scholar 

  90. 90.

    Rehman K, Shahzad T, Sahar A, Hussain S, Mahmood F, Siddique MH, et al. Effect of reactive black 5 azo dye on soil processes related to C and N cycling. PeerJ. 2018;6:e4802.

    Article  CAS  Google Scholar 

  91. 91.

    Ravi D, Parthasarathy R, Vijayabharathi V, Suresh S. Effect of textile dye effluent on soybean crop. Int J Pharm Chem Biol Sci. 2014;2(2):111–117.

    CAS  Google Scholar 

  92. 92.

    Hariani PL, Faizal M, Setiabudidaya D. Removal of Procion red MX-5B from songket's industrial wastewater in South Sumatra Indonesia using activated carbon-Fe3O4 composite. Sustain Environ Res. 2018;28(4):158–164.

    CAS  Article  Google Scholar 

  93. 93.

    Bagheri AR, Ghaedi M, Asfaram A, Bazrafshan AA, Jannesar R. Comparative study on ultrasonic assisted adsorption of dyes from single system onto Fe3O4 magnetite nanoparticles loaded on activated carbon: experimental design methodology. Ultrason Sonochem. 2017;34:294–304.

    CAS  Article  Google Scholar 

  94. 94.

    Foroutan R, Mohammadi R, Razeghi J, Ramavandi B. Performance of algal activated carbon/Fe3O4 magnetic composite for cationic dyes removal from aqueous solutions. Algal Res. 2019;40:101509.

    Article  Google Scholar 

  95. 95.

    Ashrafi S, Kamani H, Mahvi A. The optimization study of direct red 81 and methylene blue adsorption on NaOH-modified rice husk. Desalin Water Treat. 2016;57(2):738–746.

    CAS  Article  Google Scholar 

  96. 96.

    Xu HM, Sun XF, Wang SY, Song C, Wang SG. Development of laccase/graphene oxide membrane for enhanced synthetic dyes separation and degradation. Sep Purif. 2018;204:255–260.

    CAS  Article  Google Scholar 

  97. 97.

    Khan S, Malik A. Degradation of reactive black 5 dye by a newly isolated bacterium Pseudomonas entomophila BS1. Can J Microbiol. 2016;62(3):220–232.

    Article  CAS  Google Scholar 

  98. 98.

    Szyguła A, Guibal E, Palacín MA, Ruiz M, Sastre AM. Removal of an anionic dye (acid blue 92) by coagulation-flocculation using chitosan. J Environ Manag. 2009;90(10):2979–2986.

    Article  CAS  Google Scholar 

  99. 99.

    Chen Y, Zhai SR, Liu N, Song Y, An QD, Song XW. Dye removal of activated carbons prepared from NaOH-pretreated rice husks by low-temperature solution-processed carbonization and H3PO4 activation. Bioresour Technol. 2013;144:401–409.

    CAS  Article  Google Scholar 

  100. 100.

    Bouazizi A, Breida M, Achiou B, Ouammou M, Calvo JI, Aaddane A, et al. Removal of dyes by a new nano–TiO2 ultrafiltration membrane deposited on low-cost support prepared from natural Moroccan bentonite. Appl Clay Sci. 2017;149:127–135.

    CAS  Article  Google Scholar 

  101. 101.

    Can OT, Kobya M, Demirbas E, Bayramoglu M. Treatment of the textile wastewater by combined electrocoagulation. Chemosphere. 2006;62(2):181–187.

    CAS  Article  Google Scholar 

  102. 102.

    Chakchouk I, Elloumi N, Belaid C, Mseddi S, Chaari L, Kallel M. A. a combined electrocoagulation-Electrooxidation treatment for dairy wastewater. Braz. J Chem Eng. 2017;34(1):109–117.

    CAS  Google Scholar 

  103. 103.

    Bazrafshan E, Mahvi AH, Zazouli M. Textile wastewater treatment by electrocoagulation process using aluminum electrodes. Iran J Med Sci. 2014;2(1):16–29.

    Google Scholar 

  104. 104.

    Ayekoe CY, Robert D, Lanciné DG. Combination of coagulation-flocculation and heterogeneous photocatalysis for improving the removal of humic substances in real treated water from Agbô River (Ivory-Coast). Catal Today. 2017;281:2–13.

    CAS  Article  Google Scholar 

  105. 105.

    Liu Y, Wang J, Zheng Y, Wang A. Adsorption of methylene blue by kapok fiber treated by sodium chlorite optimized with response surface methodology. Chem Eng J. 2012;184:248–255.

    CAS  Article  Google Scholar 

  106. 106.

    Aljeboree AM, Alshirifi AN, Alkaim AF. Kinetics and equilibrium study for the adsorption of textile dyes on coconut shell activated carbon. Arab J Chem. 2017;10:S3381–S3393.

    CAS  Article  Google Scholar 

  107. 107.

    Egbuna SO, Mbah CN, Okoye JO. Optimal process parameters for the adsorption of methylene blue on thermally activated Enugu white clay as a local adsorbent. Int J Eng Sci Inve. 2015;4(9):32–42.

    Google Scholar 

  108. 108.

    Ali I. New generation adsorbents for water treatment. Chem Rev. 2012;112(10):5073–91.

    CAS  Article  Google Scholar 

  109. 109.

    El-Kafrawy AF, El-Saeed SM, Farag RK, El-Saied HA, Abdel-Raouf ME. Adsorbents based on natural polymers for removal of some heavy metals from aqueous solution. Egypt J Pet. 2017;26(1):32–23.

    Google Scholar 

  110. 110.

    Berger AH, Bhown AS. Comparing physisorption and chemisorption solid sorbents for use separating CO2 from flue gas using temperature swing adsorption. Energy Procedia. 2011;4:562–567.

    CAS  Article  Google Scholar 

  111. 111.

    Üner O, Geçgel Ü, Bayrak Y. Preparation and characterization of mesoporous activated carbons from waste watermelon rind by using the chemical activation method with zinc chloride. Arab J Chem. 2019;12(8):3621–3627.

    Article  CAS  Google Scholar 

  112. 112.

    Cao Q, Xie KC, Lv YK, Bao WR. Process effects on activated carbon with large specific surface area from corn cob. Bioresour Technol. 2006;97(1):110–115.

    CAS  Article  Google Scholar 

  113. 113.

    Song Y, Wang F, Kengara FO, Bian Y, Yang X, Gu C, et al. Does powder and granular activated carbon perform equally in immobilizing chlorobenzenes in soil? Environ Sci-Proc Imp. 2015;17(1):74–80.

    CAS  Google Scholar 

  114. 114.

    Egirani D, Poyi N, Shehata N. Preparation and characterization of powdered and granular activated carbon from Palmae biomass for cadmium removal. Int J Environ Sci Te 2020; 1–12.

  115. 115.

    Ruiz B, Ferrera-Lorenzo N, Fuente E. Valorization of lignocellulosic wastes from the candied chestnut industry. Sustainable activated carbons for environmental applications. J Environ Chem Eng. 2017;5(2):1504–1515.

    CAS  Article  Google Scholar 

  116. 116.

    Román S, González JF, González-García CM, Zamora F. Control of pore development during CO2 and steam activation of olive stones. Fuel Process Technol. 2008;89(8):715–720.

    Article  CAS  Google Scholar 

  117. 117.

    Kalderis D, Bethanis S, Paraskeva P, Diamadopoulos E. Production of activated carbon from bagasse and rice husk by a single-stage chemical activation method at low retention times. Bioresour Technol. 2008;99(15):6809–6816.

    CAS  Article  Google Scholar 

  118. 118.

    Bhatnagar A, Hogland W, Marques M, Sillanpää M. An overview of the modification methods of activated carbon for its water treatment applications. Chem Eng J. 2013;219:499–511.

    CAS  Article  Google Scholar 

  119. 119.

    Mohebali S, Bastani D, Shayesteh H. Methylene blue removal using modified celery (Apium graveolens) as a low-cost biosorbent in batch mode: kinetic, equilibrium, and thermodynamic studies. J Mol Struct. 2018;1173:541–551.

    CAS  Article  Google Scholar 

  120. 120.

    Hemmati F, Norouzbeigi R, Sarbisheh F, Shayesteh H. Malachite green removal using modified sphagnum peat moss as a low-cost biosorbent: kinetic, equilibrium and thermodynamic studies. J Taiwan Inst Chem Eng. 2016;58:482–489.

    CAS  Article  Google Scholar 

  121. 121.

    Kallel F, Chaari F, Bouaziz F, Bettaieb F, Ghorbel R, Chaabouni SE. Sorption and desorption characteristics for the removal of a toxic dye, methylene blue from aqueous solution by a low cost agricultural by-product. J Mol Liq. 2016;219:279–288.

    CAS  Article  Google Scholar 

  122. 122.

    Saleh HN, Dehghani MH, Nabizadeh R, Mahvi AH, Hossein F, Ghaderpoori M, et al. Data on the acid black 1 dye adsorbtion from aqueous solutions by low-cost adsorbent- Cerastoderma lamarcki shell collected from the northern coast of Caspian Sea. Data Brief. 2018;17:774–780.

    Article  Google Scholar 

  123. 123.

    Ezechi EH, Kutty SR, Malakahmad A, Isa MH, Aminu N, Salihi IU. Removal of methylene blue from dye effluent using ageratum conyzoide leaf powder (ACLP). In AIP conference proceedings. 2015. AIP Publishing.

  124. 124.

    Daneshvar E, Sohrabi MS, Kousha M, Bhatnagar A, Aliakbarian B, Converti A, et al. Shrimp shell as an efficient bioadsorbent for acid blue 25 dye removal from aqueous solution. J Taiwan Inst Chem Eng. 2014;45(6):2926–2934.

    CAS  Article  Google Scholar 

  125. 125.

    El-Bindary AA, El-Sonbati AZ, Al-Sarawy AA, Mohamed KS, Farid MA. Adsorption and thermodynamic studies of hazardous azocoumarin dye from an aqueous solution onto low cost rice straw based carbons. J Mol Liq. 2014;199:71–78.

    CAS  Article  Google Scholar 

  126. 126.

    Reddy MS, Nirmala V, Ashwini C. Bengal gram seed husk as an adsorbent for the removal of dye from aqueous solutions – batch studies. Arab J Chem. 2017;10:S2554–S2566.

    Article  CAS  Google Scholar 

  127. 127.

    Balarak D, Jaafari J, Hassani G, Mahdavi Y, Tyagi I, Agarwal S, et al. The use of low-cost adsorbent (canola residues) for the adsorption of methylene blue from aqueous solution: isotherm, kinetic and thermodynamic studies. Colloid Interfac Sci. 2015;7:16–19.

    CAS  Article  Google Scholar 

  128. 128.

    Kazemi SY, Biparva P, Ashtiani E. Cerastoderma lamarcki shell as a natural, low cost and new adsorbent to removal of dye pollutant from aqueous solutions: equilibrium and kinetic studies. Ecol Eng. 2016;88:82–89.

    Article  Google Scholar 

  129. 129.

    Wanyonyi WC, Onyari JM, Shiundu PM. Adsorption of Congo red dye from aqueous solutions using roots of Eichhornia Crassipes: kinetic and equilibrium studies. Energy Procedia. 2014;50:862–869.

    CAS  Article  Google Scholar 

  130. 130.

    Saad SA, Isa KM, Bahari R. Chemically modified sugarcane bagasse as a potentially low-cost biosorbent for dye removal. Desalination. 2010;264(1–2):123–128.

    CAS  Article  Google Scholar 

  131. 131.

    Asfaram A, Ghaedi M, Hajati S, Goudarzi A. Ternary dye adsorption onto MnO 2 nanoparticle-loaded activated carbon: derivative spectrophotometry and modeling. RSC Adv. 2015;5(88):72300–72320.

    CAS  Article  Google Scholar 

  132. 132.

    Yang N, Zhu S, Zhang D, Xu S. Synthesis and properties of magnetic Fe3O4-activated carbon nanocomposite particles for dye removal. Mater Lett. 2008;62(4–5):645–647.

    CAS  Article  Google Scholar 

  133. 133.

    Ranjithkumar V, Sangeetha S, Vairam S. Synthesis of magnetic activated carbon/alpha-Fe2O3 nanocomposite and its application in the removal of acid yellow 17 dye from water. J Hazard Mater. 2014;273:127–135.

    CAS  Article  Google Scholar 

  134. 134.

    Altıntıg E, Altundag H, Tuzen M, Sarı A. Effective removal of methylene blue from aqueous solutions using magnetic loaded activated carbon as novel adsorbent. Chem Eng Res Des. 2017;122:151–163.

    Article  CAS  Google Scholar 

  135. 135.

    Nourmoradi H, Ghiasvand AR, Noorimotlagh Z. Removal of methylene blue and acid orange 7 from aqueous solutions by activated carbon coated with zinc oxide (ZnO) nanoparticles: equilibrium, kinetic, and thermodynamic study. Desalin Water Treat. 2014;55(1):252–262.

    Article  CAS  Google Scholar 

  136. 136.

    Wang J, Zheng S, Shao Y, Liu J, Xu Z, Zhu D. Amino-functionalized Fe(3)O(4)@SiO(2) core-shell magnetic nanomaterial as a novel adsorbent for aqueous heavy metals removal. J Colloid Interface Sci. 2010;349(1):293–299.

    CAS  Article  Google Scholar 

  137. 137.

    Venkateswarlu S, Kumar BN, Prathima B, SubbaRao Y, Jyothi NV. A novel green synthesis of Fe3O4 magnetic nanorods using Punica Granatum rind extract and its application for removal of Pb(II) from aqueous environment. Arab J Chem. 2019;12(4):588–596.

    CAS  Article  Google Scholar 

  138. 138.

    Poursani AS, Nilchi A, Hassani A, Shariat SM, Nouri J. The synthesis of Nano TiO2 and its use for removal of Lead ions from aqueous solution. Water Resour Prot. 2016;08(04):438–448.

    CAS  Article  Google Scholar 

  139. 139.

    Venkatesham V, Madhu GM, Satyanarayana SV, Preetham HS. Adsorption of Lead on gel combustion derived Nano ZnO. Procedia Engineering. 2013;51:308–313.

    CAS  Article  Google Scholar 

  140. 140.

    Dargahi A, Golestanifar H, Darvishi P, Karam A. An investigation and comparison of removing heavy metals (Lead and chromium) from aqueous solutions using magnesium oxide nanoparticles. Plol J Environ Stud. 2016;25(2):557–562.

    CAS  Article  Google Scholar 

  141. 141.

    Mahmoud AM, Ibrahim FA, Shaban SA, Youssef NA. Adsorption of heavy metal ion from aqueous solution by nickel oxide nano catalyst prepared by different methods. Egypt J Pet. 2015;24(1):27–35.

    Article  Google Scholar 

  142. 142.

    Ghaniem R. Use of hydrous manganese oxides Nanopowders as a potential sorbent for selective removal of nickel ions from industrial waste water, kinetics and isotherm studies. Am J Chem Eng. 2016;4(6):170-178.

  143. 143.

    Farghali AA, Bahgat M, Allah AE, Khedr MH. Adsorption of Pb(II) ions from aqueous solutions using copper oxide nanostructures. Beni-Seuf Univ J Appl Sci. 2013;2(2):61–71.

    Google Scholar 

  144. 144.

    Chaudhry SA, Khan TA, Ali I. Zirconium oxide-coated sand based batch and column adsorptive removal of arsenic from water: isotherm, kinetic and thermodynamic studies. Egypt J Pet. 2017;26(2):553–563.

    Article  Google Scholar 

  145. 145.

    Li X, Dou X, Li J. Antimony(V) removal from water by iron-zirconium bimetal oxide: performance and mechanism. Int J Environ Sci. 2012;27(4):1197–1203.

    Google Scholar 

  146. 146.

    Asfaram A, Ghaedi M, Hajati S, Goudarzi A, Dil EA. Screening and optimization of highly effective ultrasound-assisted simultaneous adsorption of cationic dyes onto Mn-doped Fe3O4-nanoparticle-loaded activated carbon. Ultrason Sonochem. 2017;34:1–12.

    CAS  Article  Google Scholar 

  147. 147.

    Altıntıg E, Altundag H, Tuzen M, Sarı A. Effective removal of methylene blue from aqueous solutions using magnetic loaded activated carbon as novel adsorbent. Chem Eng Res Des. 2017;122:151–163.

    Article  CAS  Google Scholar 

  148. 148.

    Saini J, Garg VK, Gupta RK, Kataria N. Removal of Orange G and Rhodamine B dyes from aqueous system using hydrothermally synthesized zinc oxide loaded activated carbon (ZnO-AC). J Environ Chem Eng. 2017;5(1):884–892.

    CAS  Article  Google Scholar 

  149. 149.

    Ansari F, Ghaedi M, Taghdiri M, Asfaram A. Application of ZnO nanorods loaded on activated carbon for ultrasonic assisted dyes removal: experimental design and derivative spectrophotometry method. Ultrason Sonochem. 2016;33:197–209.

    CAS  Article  Google Scholar 

  150. 150.

    Barka N, Abdennouri M, Makhfouk MEL. Removal of methylene blue and Eriochrome black T from aqueous solutions by biosorption on Scolymus hispanicus L.: kinetics, equilibrium and thermodynamics. J Taiwan Inst Chem Eng. 2011;42(2):320–326.

    CAS  Article  Google Scholar 

  151. 151.

    Ghaedi M, Reza Rahimi M, Ghaedi AM, Tyagi I, Agarwal S, Gupta VK. Application of least squares support vector regression and linear multiple regression for modeling removal of methyl orange onto tin oxide nanoparticles loaded on activated carbon and activated carbon prepared from Pistacia atlantica wood. J. Colloid Interface Sci. 2016;461:425–434.

    CAS  Article  Google Scholar 

  152. 152.

    Ma CM, Hong GB, Wang YK. Performance evaluation and optimization of dyes removal using Rice bran-based magnetic composite adsorbent. Materials. 2020;13(12):2764.

    CAS  Article  Google Scholar 

  153. 153.

    Beltrame KK, Cazetta AL, de Souza PS, Spessato L, Silva TL, Almeida VC. Adsorption of caffeine on mesoporous activated carbon fibers prepared from pineapple plant leaves. Ecotoxicol Environ Saf. 2018;147:64–71.

    CAS  Article  Google Scholar 

  154. 154.

    Ghaedi M, Nasab AG, Khodadoust S, Sahraei R, Daneshfar A. Characterization of zinc oxide nanorods loaded on activated carbon as cheap and efficient adsorbent for removal of methylene blue. J Ind Eng Chem. 2015;21:986–993.

    CAS  Article  Google Scholar 

  155. 155.

    Boumediene M, Benaïssa H, George B, Molina S, Merlin A. Effects of pH and ionic strength on methylene blue removal from synthetic aqueous solutions by sorption onto orange peel and desorption study. J Mater Environ Sci. 2018;9(6):1700–1711.

    CAS  Google Scholar 

  156. 156.

    Dil EA, Ghaedi M, Asfaram A, Bazrafshan AA. Ultrasound wave assisted adsorption of Congo red using gold-magnetic nanocomposite loaded on activated carbon: optimization of process parameters. Ultrason Sonochem. 2018;46:99–105.

    CAS  Article  Google Scholar 

  157. 157.

    Kosmulski. pH-dependent surface charging and points of zero charge. IV. Update and new approach. J Colloid Interface Sci. 2009;337(2):439–448.

    CAS  Article  Google Scholar 

  158. 158.

    Pereira RC, Anizelli PR, Di Mauro E, Valezi DF, da Costa AC, Zaia CT, et al. The effect of pH and ionic strength on the adsorption of glyphosate onto ferrihydrite. Geochemical Trans. 2019;20(1):3.

    Article  CAS  Google Scholar 

  159. 159.

    El-Sayed GO, Yehia MM, Asaad AA. Assessment of activated carbon prepared from corncob by chemical activation with phosphoric acid. Water Resour Ind. 2014;7-8:66–75.

    Article  Google Scholar 

  160. 160.

    Prajapati AK, Mondal MK. Hazardous as (III) removal using nanoporous activated carbon of waste garlic stem as adsorbent: kinetic and mass transfer mechanisms. Korean J Chem Eng. 2019;36(11):1900–1914.

    CAS  Article  Google Scholar 

  161. 161.

    Farahani M, Abdullah SR, Hosseini S, Shojaeipour S, Kashisaz M. Adsorption-based cationic dyes using the carbon active sugarcane bagasse. Procedia Environ Sci. 2011;10:203–208.

    CAS  Article  Google Scholar 

  162. 162.

    Agarwal S, Tyagi I, Gupta VK, Bagheri AR, Ghaedi M, Asfaram A, et al. Rapid adsorption of ternary dye pollutants onto copper (I) oxide nanoparticle loaded on activated carbon: experimental optimization via response surface methodology. J Environ Chem Eng. 2016;4(2):1769–1779.

    CAS  Article  Google Scholar 

  163. 163.

    Etim UJ, Umoren SA, Eduok UM. Coconut coir dust as a low cost adsorbent for the removal of cationic dye from aqueous solution. J Saudi Chem Soc. 2016;20:S67–S76.

    CAS  Article  Google Scholar 

  164. 164.

    Mousavi SA, Almasi A, Navazeshkha F, Falahi F. Biosorption of lead from aqueous solutions by algae biomass: optimization and modeling. Desalin Water Treat. 2019;148:229–237.

    CAS  Article  Google Scholar 

  165. 165.

    Dil EA, Ghaedi M, Ghaedi A, Asfaram A, Jamshidi M, Purkait MK. Application of artificial neural network and response surface methodology for the removal of crystal violet by zinc oxide nanorods loaded on activate carbon: kinetics and equilibrium study. J Taiwan Inst Chem Eng. 2016;59:210–220.

    CAS  Article  Google Scholar 

  166. 166.

    Taghizadeh F, Ghaedi M, Kamali K, Sharifpour E, Sahraie R, Purkait MK. Comparison of nickel and/or zinc selenide nanoparticle loaded on activated carbon as efficient adsorbents for kinetic and equilibrium study of removal of Arsenazo (ΙΙΙ) dye. Powder tech. 2013;245:217–226.

    CAS  Article  Google Scholar 

  167. 167.

    Ahmadi K, Ghaedi M, Ansari A. Comparison of nickel doped Zinc Sulfide and/or palladium nanoparticle loaded on activated carbon as efficient adsorbents for kinetic and equilibrium study of removal of Congo Red dye. Spectrochim Acta A Mol Biomol Spectrosc. 2015;136 Pt C:1441–1449.

    CAS  Article  Google Scholar 

  168. 168.

    Shakoor S, Nasar A. Adsorptive treatment of hazardous methylene blue dye from artificially contaminated water using cucumis sativus peel waste as a low-cost adsorbent. Groundw Sustain Dev. 2017;5:152–159.

    Article  Google Scholar 

  169. 169.

    Gündüz F, Bayrak B. Biosorption of malachite green from an aqueous solution using pomegranate peel: equilibrium modelling, kinetic and thermodynamic studies. J Mol Liq. 2017;243:790–798.

    Article  CAS  Google Scholar 

  170. 170.

    Dehghani MH, Dehghan A, Najafpoor A. Removing reactive red 120 and 196 using chitosan/zeolite composite from aqueous solutions: kinetics, isotherms, and process optimization. J Ind Eng Chem. 2017;51:185–195.

    CAS  Article  Google Scholar 

  171. 171.

    Nanta P, Kasemwong K, Skolpap W. Isotherm and kinetic modeling on superparamagnetic nanoparticles adsorption of polysaccharide. J Environ Chem Eng. 2018;6(1):794–802.

    CAS  Article  Google Scholar 

  172. 172.

    Bao Y, Zhang G. Study of adsorption characteristics of methylene blue onto activated carbon made by Salix Psammophila. Energy Procedia. 2012;16:1141–1146.

    CAS  Article  Google Scholar 

  173. 173.

    Njoku VO, Foo KY, Asif M, Hameed BH. Preparation of activated carbons from rambutan (Nephelium lappaceum) peel by microwave-induced KOH activation for acid yellow 17 dye adsorption. Chem Eng J. 2014;250:198–204.

    CAS  Article  Google Scholar 

  174. 174.

    Pirbazari AE, Saberikhah E, Kozani SH. Fe3O4–wheat straw: preparation, characterization and its application for methylene blue adsorption. Water Resour Ind. 2014;7-8:23–37.

    Article  Google Scholar 

  175. 175.

    You H, Chen J, Yang C, Xu L. Selective removal of cationic dye from aqueous solution by low-costadsorbent using phytic acid modified wheat straw. Colloid Surface A. 2016;509:91–98.

    CAS  Article  Google Scholar 

  176. 176.

    Nasrullah A, Bhat AH, Naeem A, Isa MH, Danish M. High surface area mesoporous activated carbon-alginate beads for efficient removal of methylene blue. Int J Biol Macromol. 2018;107(Pt B):1792–1799.

    CAS  Article  Google Scholar 

  177. 177.

    Dubinin M. The potential theory of adsorption of gases and vapors for adsorbents with energetically nonuniform surfaces. Chem Rev. 1960;60(2):235–241.

    CAS  Article  Google Scholar 

  178. 178.

    Foo KY, Hameed BH. Factors affecting the carbon yield and adsorption capability of the mangosteen peel activated carbon prepared by microwave assisted K2CO3 activation. Chem Eng J. 2012;180:66–74.

    CAS  Article  Google Scholar 

  179. 179.

    Yaghmaeian K, Mashizi RK, Nasseri S, Mahvi AH, Alimohammadi M, Nazmara S. Removal of inorganic mercury from aquatic environments by multi-walled carbon nanotubes. J Environ Health Sci Eng. 2015;13:55.

    Article  CAS  Google Scholar 

  180. 180.

    Foo KY, Hameed BH. Preparation and characterization of activated carbon from sunflower seed oil residue via microwave assisted K2CO3 activation. Bioresour Technol. 2011;102(20):9794–9799.

    CAS  Article  Google Scholar 

  181. 181.

    Nethaji S, Sivasamy A, Mandal AB. Adsorption isotherms, kinetics and mechanism for the adsorption of cationic and anionic dyes onto carbonaceous particles prepared from Juglans regia shell biomass. Int J Environ Sci Te. 2012;10(2):231–242.

    Article  CAS  Google Scholar 

  182. 182.

    El-Sadaawy M, Abdelwahab O. Adsorptive removal of nickel from aqueous solutions by activated carbons from doum seed (Hyphaenethebaica) coat. Alex Eng J. 2014;53(2):399–408.

    Article  Google Scholar 

  183. 183.

    Ghaedi M, Ghayedi M, Kokhdan SN, Sahraei R, Daneshfar A. Palladium, silver, and zinc oxide nanoparticles loaded on activated carbon as adsorbent for removal of bromophenol red from aqueous solution. J Ind Eng Chem. 2013;19(4):1209–1217.

    CAS  Article  Google Scholar 

  184. 184.

    Dehghani MH, Taher MM, Bajpai AK, Heibati B, Tyagi I, Asif M, et al. Removal of noxious Cr (VI) ions using single-walled carbon nanotubes and multi-walled carbon nanotubes. Chem Eng J. 2015;279:344–352.

    CAS  Article  Google Scholar 

  185. 185.

    Fard RF, Sar ME, Fahiminia M, Mirzaei N, Yousefi N, Mansoorian HJ, Khanjani N, Rezaei S, Ghadiri SK. Efficiency of Multi Walled Carbon Nanotubes for Removing Direct Blue 71 from Aqueous Solutions. Eurasian J Anal Chem. 2018; 13(3):123-146.

  186. 186.

    Kaveeshwar AR, Ponnusamy SK, Revellame ED, Gang DD, Zappi ME, Subramaniam R. Pecan shell based activated carbon for removal of iron (II) from fracking wastewater: adsorption kinetics, isotherm and thermodynamic studies. Process Saf Environ. 2018;114:107–122.

    CAS  Article  Google Scholar 

  187. 187.

    Nayeri D, Mousavi SA, Mehrabi A. Oxytetracycline removal from aqueous solutions using activated carbon prepared from corn stalks. J Appl Res Water Wastewater. 2019;6(1):67–72.

    Google Scholar 

  188. 188.

    Bagheri S, Aghaei H, Ghaedi M, Asfaram A, Monajemi M, Bazrafshan AA. Synthesis of nanocomposites of iron oxide/gold (Fe3O4/au) loaded on activated carbon and their application in water treatment by using sonochemistry: optimization study. Ultrason Sonochem. 2018;41:279–287.

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The authors of this article are well aware of the need to thank Kermanshah University of Medical Sciences.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Seyyed Alireza Mousavi.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nayeri, D., Mousavi, S.A. Dye removal from water and wastewater by nanosized metal oxides - modified activated carbon: a review on recent researches. J Environ Health Sci Engineer (2020). https://doi.org/10.1007/s40201-020-00566-w

Download citation

Keywords

  • Nanoparticles
  • Activated carbon
  • Adsorbent
  • Dye
  • Wastewater
  • Water