Skip to main content
Log in

Simultaneous removal of sulfamethoxazole and enhanced denitrification process from simulated municipal wastewater by a novel 3D-BER system

  • Research article
  • Published:
Journal of Environmental Health Science and Engineering Aims and scope Submit manuscript

Abstract

In this study, at an electric current intensity at 60 mA, more than 90.50 ± 4.76% of Sulfamethoxazole (SMX) was degraded. The strengthening of bacterial metabolisms and the sustainment of electrical stimulation contributed to the rapid removal of SMX and nitrates from simulated wastewater by a novel 3D-BER system. From the literature, very few studies have been performed to investigate the high risk of nitrates and antibiotics SMX found in wastewater treatment. The highest antibiotic SMX and nitrogen removal efficiency was 96.45 ± 2.4% (nitrate-N), 99.5 ± 1.5% (nitrite-N), 88.45 ± 1.4% (ammonia-N), 78.6 ± 1.0% (total nitrogen), and SMX (90.50 ± 4.76%), respectively. These results were significantly higher as compared to control system (p < 0.05). The highest denitrification efficiency was achieved at the pH level of 7.0 ± 0.20 ̶ 7.5 ± 0.31. Lower or higher pH value can effect on an approach of heterotrophic-autotrophic denitrification. Moreover, low current intensity did not show any significant effect on the degradation, however, enhanced the removal rate of nitrate or nitrite as well as antibiotic SMX. Based on the results of HPLC and LC-MS/MS analysis, the intermediate products were proposed after efficient biodegradation of SMX. Finally, these results is expected to provide some new insights towards the high electric currents, changes the bacterial community structure, and the activated sludge which played an important role in the biodegradation of SMX and nitrates removal more efficiently.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tran NH, Reinhard M, Gin KY-H. Occurrence and fate of emerging contaminants in municipal wastewater treatment plants from different geographical regions-a review. Water Res. 2018;133(182):207.

    Google Scholar 

  2. Ben W, Wang J, Cao R, Yang M, Zhang Y, Qiang Z. Distribution of antibiotic resistance in the effluents of ten municipal wastewater treatment plants in China and the effect of treatment processes. Chemosphere. 2017;172:392–8.

    Article  CAS  Google Scholar 

  3. Larcher S, Yargeau V. Biodegradation of sulfamethoxazole: current knowledge and perspectives. Appl Microbiol Biot. 2012;96(2):309–18.

    Article  CAS  Google Scholar 

  4. Park HI, Kim JS, Kim DK, Choi Y-J, Pak D. Nitrate-reducing bacterial community in a biofilm-electrode reactor. Enzyme Microb Technol. 2006;39(3):453–8.

    Article  CAS  Google Scholar 

  5. Szpyrkowicz L, Daniele S, Radaelli M, Specchia S. Removal of NO3− from water by electrochemical reduction in different reactor configurations. Appl Catal B-Environ. 2006;66(1–2):40–50.

    Article  CAS  Google Scholar 

  6. Xue W, Li F, Zhou Q. Degradation mechanisms of sulfamethoxazole and its induction of bacterial community changes and antibiotic resistance genes in a microbial fuel cell. Bioresour Technol. 2019;289:121632.

  7. Yan W, Xiao Y, Yan W, Ding R, Wang S, Zhao F. The effect of bioelectrochemical systems on antibiotics removal and antibiotic resistance genes: a review. Chem Eng J. 2018.

  8. Zhang S, Yang X-L, Li H, Song H-L, Wang R-C, Dai Z-Q. Degradation of sulfamethoxazole in bioelectrochemical system with power supplied by constructed wetland-coupled microbial fuel cells. Bioresour Technol. 2017;244:345–52.

    Article  CAS  Google Scholar 

  9. Reis PJ, Homem V, Alves A, Vilar VJ, Manaia CM, Nunes OC. Insights on sulfamethoxazole bio-transformation by environmental Proteobacteria isolates. J Hazard Mater. 2018;358:310–8.

    Article  CAS  Google Scholar 

  10. Zhang S, Song H, Yang X, Yang K, Wang X. Effect of electrical stimulation on the fate of sulfamethoxazole and tetracycline with their corresponding resistance genes in three-dimensional biofilm-electrode reactors. Chemosphere. 2016;164:113–9.

    Article  CAS  Google Scholar 

  11. Wang L, Liu Y, Ma J, Zhao F. Rapid degradation of sulphamethoxazole and the further transformation of 3-amino-5-methylisoxazole in a microbial fuel cell. Water Res. 2016;88:322–8.

    Article  CAS  Google Scholar 

  12. Cui Y-X, Biswal BK, Guo G, Deng Y-F, Huang H, Chen G-H et al. Biological nitrogen removal from wastewater using sulphur-driven autotrophic denitrification. Appl Microb Biot. 2019:1–17.

  13. Yang X, Zhang S, Li H, Zhang L, Song H, Wang Y. Effects of voltage on sulfadiazine degradation and the response of sul genes and microbial communities in biofilm-electrode reactors. Ecotoxicol Environ Saf. 2018;151:272–8.

    Article  CAS  Google Scholar 

  14. Xu B, Mao D, Luo Y, Xu L. Sulfamethoxazole biodegradation and biotransformation in the water–sediment system of a natural river. Bioresour Technol. 2011;102(14):7069–76.

    Article  CAS  Google Scholar 

  15. Chang B-V, Chang Y-T, Chao W-L, Yeh S-L, Kuo D-L, Yang C-W. Effects of sulfamethoxazole and sulfamethoxazole-degrading bacteria on water quality and microbial communities in milkfish ponds. Environ Pollut. 2019.

  16. Ji Y, Ferronato C, Salvador A, Yang X, Chovelon J. Degradation of ciprofloxacin and sulfamethoxazole by ferrous-activated persulfate: Implications for remediation of groundwater contaminated by antibiotics. Sci Total Environ. 2014;472:800–8.

    Article  CAS  Google Scholar 

  17. Lin S, Mackey HR, Hao T, Guo G, van Loosdrecht MC, Chen G. Biological sulfur oxidation in wastewater treatment: a review of emerging opportunities. Water Res. 2018;143:399–415.

    Article  CAS  Google Scholar 

  18. Tourang M, Aminzadeh B, Torabian A. Autotrophic denitrification of synthetic nitrate-contaminated groundwater in up-flow fixed-bed bioreactor by pumice as porous media. Environ Eng Manage J. 2018.

  19. Zhao Y, Feng C, Wang Q, Yang Y, Zhang Z, Sugiura N. Nitrate removal from groundwater by cooperating heterotrophic with autotrophic denitrification in a biofilm–electrode reactor. J Hazard Mater. 2011;192(3):1033–9.

    Article  CAS  Google Scholar 

  20. del Mar G-R, Mezcua M, Agüera A, Fernández-Alba AR, Gonzalo S, Rodríguez A, et al. Chemical and toxicological evolution of the antibiotic sulfamethoxazole under ozone treatment in water solution. J Hazard Mater. 2011;192(1):18–25.

    Google Scholar 

  21. Wang L, Wu Y, Zheng Y, Liu L, Zhao F. Efficient degradation of sulfamethoxazole and the response of microbial communities in microbial fuel cells. RSC Adv. 2015;5(69):56430–7.

    Article  CAS  Google Scholar 

  22. Hao R, Li S, Li J, Meng C. Denitrification of simulated municipal wastewater treatment plant effluent using a three-dimensional biofilm-electrode reactor: operating performance and bacterial community. Bioresour Technol. 2013;143:178–86.

    Article  CAS  Google Scholar 

  23. Müller E, Schüssler W, Horn H, Lemmer H. Aerobic biodegradation of the sulfonamide antibiotic sulfamethoxazole by activated sludge applied as co-substrate and sole carbon and nitrogen source. Chemosphere. 2013;92(8):969–78.

    Article  Google Scholar 

  24. Harnisch F, Gimkiewicz C, Bogunovic B, Kreuzig R, Schröder U. On the removal of sulfonamides using microbial bioelectrochemical systems. Electrochem Commun. 2013;26:77–80.

    Article  CAS  Google Scholar 

  25. Zhang S, Song H-L, Yang X-L, Li H, Wang Y-W. A system composed of a biofilm electrode reactor and a microbial fuel cell-constructed wetland exhibited efficient sulfamethoxazole removal but induced sul genes. Bioresour Technol. 2018;256:224–31.

    Article  CAS  Google Scholar 

  26. Sanghavi RJ, Dobariya R, Bhatti S, Kumar A. Preparation of high-purity magnesium-ammonium-phosphate fertilizer using sea bittern and industrial waste streams. Environ Sci Pollut Res. 2020;27(7):7720–8.

    Article  CAS  Google Scholar 

  27. Landry KA, Sun P, Huang C-H, Boyer TH. Ion-exchange selectivity of diclofenac, ibuprofen, ketoprofen, and naproxen in ureolyzed human urine. Water Res. 2015;68:510–21.

    Article  CAS  Google Scholar 

  28. Wang S, Wang J. Biodegradation and metabolic pathway of sulfamethoxazole by a novel strain Acinetobacter sp. Appl Microb Biot. 2018;102(1):425–32.

    Article  CAS  Google Scholar 

  29. Reis PJ, Reis AC, Ricken B, Kolvenbach BA, Manaia CM, Corvini PF, et al. Biodegradation of sulfamethoxazole and other sulfonamides by Achromobacter denitrificans PR1. J Hazard Mater. 2014;280:741–9.

    Article  CAS  Google Scholar 

  30. Zhou M, Wang W, Chi M. Enhancement on the simultaneous removal of nitrate and organic pollutants from groundwater by a three-dimensional bio-electrochemical reactor. Bioresour Technol. 2009;100(20):4662–8.

    Article  CAS  Google Scholar 

  31. Hassan M, Zhu G, Yang Z, Lu Y, Lang Y, Gong L et al. Effect of C/N ratio on biodegradation of ciprofloxacin and denitrification from Low C/N wastewater by a novel 3D-BER System. 2020.

  32. Hamilton EI. Laboratory manual for the examination of water, waste water and soil. Sci Total Environ. 1990;92:289.

    Google Scholar 

  33. Chen L, Zhao L, Cai W, Shao J, Huang X, Liu Y. An accurate and reproducible method for simultaneous determination of four flavonoids in EtOAc extracts from Sophora flavescens Ait. in rat plasma based on UHPLC Q‐Exactive Mass spectrometry: Application to a pharmacokinetics study. Biomed Chromatogr. 2019;33(3):e4447.

    Article  Google Scholar 

  34. Huang X, Liu C, Li K, Su J, Zhu G, Liu L. Performance of vertical up-flow constructed wetlands on swine wastewater containing tetracyclines and tet genes. Water Res. 2015;70:109–17.

    Article  CAS  Google Scholar 

  35. Costa F, Lago A, Rocha Vn, Barros Os, Costa L, Vipotnik Z et al. A Review on Biological Processes for Pharmaceuticals Wastes Abatement—A Growing Threat to Modern Society. Environ Sci Technol. 2019.

  36. Xu D, Xiao E, Xu P, Zhou Y, He F, Zhou Q, et al. Performance and microbial communities of completely autotrophic denitrification in a bioelectrochemically-assisted constructed wetland system for nitrate removal. Bioresour Technol. 2017;228:39–46.

    Article  CAS  Google Scholar 

  37. Chen D, Wang H, Yang K, Ma F. Performance and microbial communities in a combined bioelectrochemical and sulfur autotrophic denitrification system at low temperature. Chemosphere. 2018;193:337–42.

    Article  CAS  Google Scholar 

  38. Dhamole PB, Nair RR, D’Souza SF, Lele S. Denitrification of high strength nitrate waste. Bioresour Technol. 2007;98(2):247–52.

    Article  CAS  Google Scholar 

  39. Gonzalez O, Esplugas M, Sans C, Torres A, Esplugas S. Performance of a sequencing batch biofilm reactor for the treatment of pre-oxidized sulfamethoxazole solutions. Water Res. 2009;43(8):2149–58.

    Article  CAS  Google Scholar 

  40. Liu S, Song H, Wei S, Liu Q, Li X, Qian X. Effect of direct electrical stimulation on decolorization and degradation of azo dye reactive brilliant red X-3B in biofilm-electrode reactors. Biochem Eng J. 2015;93:294–302.

    Article  CAS  Google Scholar 

  41. Telgmann U, Horn H, Morgenroth E. Influence of growth history on sloughing and erosion from biofilms. Water Res. 2004;38(17):3671–84.

    Article  CAS  Google Scholar 

  42. Mao Y, Xia Y, Zhang T. Characterization of Thauera-dominated hydrogen-oxidizing autotrophic denitrifying microbial communities by using high-throughput sequencing. Bioresour Technol. 2013;128:703–10.

    Article  CAS  Google Scholar 

  43. Liu H, Yan Q, Shen W. Biohydrogen facilitated denitrification at biocathode in bioelectrochemical system (BES). Bioresour Technol. 2014;171:187–92.

    Article  CAS  Google Scholar 

  44. Jia Y-H, Tran H-T, Kim D-H, Oh S-J, Park D-H, Zhang R-H, et al. Simultaneous organics removal and bio-electrochemical denitrification in microbial fuel cells. Bioprocess Biosyst Eng. 2008;31(4):315–21.

    Article  CAS  Google Scholar 

  45. Cha J, Kim C, Choi S, Lee G, Chen G, Lee T. Evaluation of microbial fuel cell coupled with aeration chamber and bio-cathode for organic matter and nitrogen removal from synthetic domestic wastewater. Water Sci Technol. 2009;60(6):1409–18.

    Article  CAS  Google Scholar 

  46. Hao R, Meng C, Li J. An integrated process of three-dimensional biofilm-electrode with sulfur autotrophic denitrification (3DBER-SAD) for wastewater reclamation. Appl Microbiol Biot. 2016;100(16):7339–48.

    Article  CAS  Google Scholar 

  47. Oberoi AS, Jia Y, Zhang H, Khanal SK, Lu H. Insights into the fate and removal of antibiotics in engineered biological treatment systems: a critical review. Environ Sci Technol. 2019;53(13):7234–64.

    Article  CAS  Google Scholar 

  48. Guo X, Yan Z, Zhang Y, Kong X, Kong D, Shan Z, et al. Removal mechanisms for extremely high-level fluoroquinolone antibiotics in pharmaceutical wastewater treatment plants. Environ Sci Pollut Res. 2017;24(9):8769–77.

    Article  CAS  Google Scholar 

  49. Zhang S, Yang Y-L, Lu J, Zuo X-J, Yang X-L, Song H-L. A review of bioelectrochemical systems for antibiotic removal: Efficient antibiotic removal and dissemination of antibiotic resistance genes. J Water Process Eng. 2020;37:101421.

    Article  Google Scholar 

  50. Jiang B, Li A, Cui D, Cai R, Ma F, Wang Y. Biodegradation and metabolic pathway of sulfamethoxazole by Pseudomonas psychrophila HA-4, a newly isolated cold-adapted sulfamethoxazole-degrading bacterium. Appl Microbiol Biot. 2014;98(10):4671–81.

    Article  CAS  Google Scholar 

  51. Miran W, Jang J, Nawaz M, Shahzad A, Lee DS. Biodegradation of the sulfonamide antibiotic sulfamethoxazole by sulfamethoxazole acclimatized cultures in microbial fuel cells. Sci Total Environ. 2018;627:1058–65.

    Article  CAS  Google Scholar 

  52. Zhang J, Ma L. Photodegradation mechanism of sulfadiazine catalyzed by Fe (III), oxalate and algae under UV irradiation. Environ Technol. 2013;34(12):1617–23.

    Article  CAS  Google Scholar 

  53. Wang Y, Zhang Z, Qiu L, Guo Y, Wang X, Xiong X, et al. Effect of temperature downshifts on biological nitrogen removal and community structure of a lab-scale aerobic denitrification process. Biochem Eng J. 2015;101:200–8.

    Article  CAS  Google Scholar 

  54. Kondaveeti S, Lee S-H, Park H-D, Min B. Bacterial communities in a bioelectrochemical denitrification system: the effects of supplemental electron acceptors. Water Res. 2014;51:25–36.

    Article  CAS  Google Scholar 

  55. Li S, Zhang N, Zhang Z, Luo J, Shen B, Zhang R, et al. Antagonist Bacillus subtilis HJ5 controls Verticillium wilt of cotton by root colonization and biofilm formation. Biol Fertil Soils. 2013;49(3):295–303.

    Article  Google Scholar 

  56. Andersson S, Kuttuva Rajarao G, Land CJ, Dalhammar G. Biofilm formation and interactions of bacterial strains found in wastewater treatment systems. FEMS Microbiol Lett. 2008;283(1):83–90.

    Article  CAS  Google Scholar 

  57. Shu D, He Y, Yue H, Wang Q. Microbial structures and community functions of anaerobic sludge in six full-scale wastewater treatment plants as revealed by 454 high-throughput pyrosequencing. Bioresour Technol. 2015;186:163–72.

    Article  CAS  Google Scholar 

  58. He Q, Zhou J, Wang H, Zhang J, Wei L. Microbial population dynamics during sludge granulation in an A/O/A sequencing batch reactor. Bioresour Technol. 2016;214:1–8.

    Article  CAS  Google Scholar 

  59. Hu M, Wang X, Wen X, Xia Y. Microbial community structures in different wastewater treatment plants as revealed by 454-pyrosequencing analysis. Bioresour Technol. 2012;117:72–9.

    Article  CAS  Google Scholar 

  60. Chen C, Xu X-J, Xie P, Yuan Y, Zhou X, Wang A-J, et al. Pyrosequencing reveals microbial community dynamics in integrated simultaneous desulfurization and denitrification process at different influent nitrate concentrations. Chemosphere. 2017;171:294–301.

    Article  CAS  Google Scholar 

  61. Lee S-H, Kondaveeti S, Min B, Park H-D. Enrichment of Clostridia during the operation of an external-powered bio-electrochemical denitrification system. Process Biochem. 2013;48(2):306–11.

    Article  CAS  Google Scholar 

  62. Müller A, Westergaard K, Christensen S, Sørensen SJ. The diversity and function of soil microbial communities exposed to different disturbances. Microb Ecol. 2002;44(1):49–58.

    Article  Google Scholar 

  63. Bouju H, Ricken B, Beffa T, Corvini PF-X, Kolvenbach BA. Isolation of bacterial strains capable of sulfamethoxazole mineralization from an acclimated membrane bioreactor. Appl Environ Microbiol. 2012;78(1):277–9.

    Article  CAS  Google Scholar 

  64. Wan D, Li Q, Liu Y, Xiao S, Wang H. Simultaneous reduction of perchlorate and nitrate in a combined heterotrophic-sulfur-autotrophic system: Secondary pollution control, pH balance and microbial community analysis. Water Res. 2019;165:115004.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was financially supported by the Tibet Science and Technology Department (XZ201801-GA-05) and the National Science Foundation of China (51578132).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangcan Zhu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassan, M., Zhu, G., Yang, Z. et al. Simultaneous removal of sulfamethoxazole and enhanced denitrification process from simulated municipal wastewater by a novel 3D-BER system. J Environ Health Sci Engineer 19, 23–38 (2021). https://doi.org/10.1007/s40201-020-00562-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40201-020-00562-0

Keywords

Navigation