The effect of Ca-bearing contents in chitosan on Pb2+, Cd2+ and Cu2+ adsorption and its adsorption mechanism

Abstract

The preparation of chitosan has been investigated for more than half century; however, the application of chitosan for heavy metal (HM) adsorption is still under research. This study investigated the effects of chitosan with chemically controlled Ca-bearing contents (CBC) on Pb2+, Cd2+ and Cu2+ adsorption in the solution with the initial pH values of 2.10, 4.14 and 6.13. Highly purified chitosan showed the optimum HM adsorption at the initial pH values of 4.14 and 6.13, and the adsorption mechanism was chemisorption involving valence forces through sharing or exchange of electrons between the chitosan and HM ions. Highly purified chitosan prepared from HCl treated chitin only showed effective for Pb2+, however, those prepared from CH3COOH treated chitin showed effective for Pb2+, Cd2+ and Cu2+ adsorption due to a little amount of CBC. The HM adsorption mechanisms of partly purified chitosan were precipitation due to CBC and biosorption. Chitosan with 73% CBC showed the optimum adsorption of Pb2+ (755 mg/g) at an initial pH value of 2.10 while Cd2+ (979 mg/g) and Cu2+ (877 mg/g) at the initial pH values of 4.14 and 6.13. High Ca(OH)2-bearing chitosan prepared from HCl and H2SO4 treated chtin showed the optimum Cd2+ (978 mg/g) and Cu2+ (852 mg/g) adsorption at an initial pH value of 2.10. Biosorption isotherm and kinetics models showed that the adsorption data of Pb2+, Cd2+ and Cu2+ onto the surface of chitosan was well-fitted by Langmuir model and Pseudo-second-order model with correlation coefficient (R2 > 0.95 and R2 > 0.91, respectively). Pseudo-second-order model showed that the adsorption capacity strongly depended on CBC in chitosan and initial pH value of HM solution. It is concluded that the HM adsorption by the prepared chitosan is a chemical process that was supported by CBC of chitosan through elevating solution pH value.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    Ahyat NM, Mohamad F, Ahmad A, Azmi AA. Chitin and chitosan extraction from Portunus pelagicus. Malaysian Journal of Analytical Sciences. 2017;21(4):770–7.

    Google Scholar 

  2. 2.

    Akolo SA, Kovo AS. Comparative study of adsorption of copper ion onto locally developed and commercial chitosan. Journal of Encapsulation and Adsorption Sciences. 2015;5:21–37.

    Article  CAS  Google Scholar 

  3. 3.

    An HK, Park BY, Kim DS. Crab shell for the removal of heavy metals from aqueous solution. Water Res. 2001;35(15):3551–6.

    Article  CAS  Google Scholar 

  4. 4.

    Arabyarmohammadi H, Ak D, Abdollahy M, Yong R, Ayati B, Zirakjou A, et al. Utilization of a novel chitosan/clay/biochar nanobiocomposite for immobilization of heavy metals in acid soil environment. J Polym Environ. 2018;26:2107–19.

    Article  CAS  Google Scholar 

  5. 5.

    Babel S, Kurniawan TA. Low-cost adsorbents for heavy metals uptake from contaminated water: a review. J Hazard Mater. 2003;B97:219–43.

    Article  Google Scholar 

  6. 6.

    Barbusiński K, Salwiczek S, Paszewska A. The use of chitosan for removing selected pollutants from water and wastewater-short review. Architecture, Civil Engineering and Environment. 2016;2:107–15.

    Article  Google Scholar 

  7. 7.

    Barriada JL, Herrero R, Prada-Rodríguez D, de Vicente MS. Waste spider crab shell and derived chitin as low-cost materials for cadmium and lead removal. J Chem Technol Biotechnol. 2007;82:39–46.

    Article  CAS  Google Scholar 

  8. 8.

    Bassi R, Prasher SO, Simpson BK. Removal of selected metal ions from aqueous solutions using chitosan flakes. Sep Sci Technol. 2000;35(4):547–60.

    Article  CAS  Google Scholar 

  9. 9.

    Benavente M. Adsorption of metallic ions onto chitosan: equilibrium and kinetic studies. Royal Institute of Technology, Stockholm, Sweden: Thesis submitted to Department of Chemical Engineering and Technology; 2008.

    Google Scholar 

  10. 10.

    Bhavani K, Begum ERA, Selvakumar S, Shenbagarathai R. Chitosan - a low cost adsorbent for electroplating waste water treatment. Journal of Bioremediation & Biodegradation. 2016;7(3):1–6.

    Google Scholar 

  11. 11.

    Cardenas G, Orlando P, Taboada E. Synthesis and applications of chitosan mercaptanes as heavy metal retention agent. Int J Biol Macromol. 2001;28(2):167–74.

    Article  CAS  Google Scholar 

  12. 12.

    Cardoso SL, Moino BP, Costa CSD, da Silva MGC, Vieira MGA. Evaluation of metal affinity of Ag+, Cd2+, Cr3+, Cu2+, Ni2+, Zn2+ and Pb2+ in residue of double alginate extraction from Sargassum filipendula seaweed. Chem Eng Trans. 2016;52:1027–32.

    Google Scholar 

  13. 13.

    Coughlin RW, Deshaies MR, Davis EM. Chitosan in crab shell wastes purifies electroplating wastewater. Environ Prog. 1990;9(1):35–9.

    Article  CAS  Google Scholar 

  14. 14.

    de Andrade SMB, Ladchumananandasivam R, da Rocha BG, Belarmino DD, Galvão AO. The use of exoskeletons of shrimp (Litopenaeus vanammei) and crab (Ucides cordatus) for the extraction of chitosan and production of nanomembrane. Mater Sci Appl. 2012;3:495–508.

    Google Scholar 

  15. 15.

    Demir D, Öfkeli F, Ceylan S, Karagülle NB. Extraction and characterization of chitin and chitosan from blue Craband synthesis of chitosan Cryogel scaffolds. Journal of the Turkish Chemical Society. 2016;3(3):131–44.

    CAS  Google Scholar 

  16. 16.

    Dorris K. Removal of heavy metals from wastewater using crab shells. Beaumont, Texas: Lamar University; 2005.

    Google Scholar 

  17. 17.

    Ebbers B, Ottosen LM, Jensen PE. Electrodialytic treatment of municipal wastewater and sludge for the removal of heavy metals and recovery of phosphorus. ElectrochimicaActa. 2015;181:90–9.

    Article  CAS  Google Scholar 

  18. 18.

    Evans J, Davids WG, Macrae J, Amirbahman A. Kinetics of cadmium uptake by chitosan-based crab shells. Water Res. 2002;36(13):3219–26.

    Article  CAS  Google Scholar 

  19. 19.

    Forutan R, Ehsandoost E, Hadipour S, Mobaraki Z, Maryam Saleki M, Mohebbi G. Kinetic and equilibrium studies on the adsorption of lead by the chitin of pink shrimp (Solenocera melantho). Entomology and Applied Science Letters. 2016;3(3):20–6.

    Google Scholar 

  20. 20.

    Gerente C, McKay G, Andres Y, Le Cloirec P. Interactions of natural aminated polymers with different species of arsenic at low concentrations: application in water treatment. Adsorption. 2005;11:859–63.

    Article  Google Scholar 

  21. 21.

    Gerente C, Lee VKC, Cloirec PL, McKay G. Application of chitosan for the removal of metals from wastewaters by adsorption-mechanisms and models review. Crit Rev Environ Sci Technol. 2007;37:41–127.

    Article  CAS  Google Scholar 

  22. 22.

    Kamaruddin NH, Bakar AAA, Mobarak NN, Zan MSD, Arsad N. Binding affinity of a highly sensitive au/Ag/au/chitosan-graphene oxide sensor based on direct detection of Pb2+ and Hg2+ ions. Sensors. 2017;17:2277–92.

    Article  CAS  Google Scholar 

  23. 23.

    Kim DS. The removal by crab shell of mixed heavy metal ions in aqueous solution. Bioresour Technol. 2003;87:355–7.

    Article  CAS  Google Scholar 

  24. 24.

    Kirubanandan S. A preliminary investigation on deprotenization of green crab shells (Carcinus maenas) for extraction of chitin/chitosan. International Journal of MediPharm Research. 2016;2(1):54–69.

    CAS  Google Scholar 

  25. 25.

    Knidri HE, Belaabed R, Khalfaouy RE, Laajeb A, Addaou A, Lahsini A. Physicochemical characterization of chitin and chitosan produced from Parapenaeus Longirostris shrimp shell wastes. Journal of Materials and Environmental Sciences. 2017;8(10):3648–53.

    Google Scholar 

  26. 26.

    Korte KM, Newcombe CE, Brennan RA. (2008) Evaluation of three different purities of crab-shell for the remediation of mine impacted water. Paper was presented at the National Meeting of the American Society of Mining and Reclamation, Richmond, VA, New Opportunities to Apply Our Science, 14–19 June, 2008.

  27. 27.

    Kumari S, Annamareddy SHK, Sahoo A, Rath PK. Physicochemical properties and characterization of chitosan synthesized from fish scales, crab and shrimp shells. Int J Biol Macromol. 2017;104:1697–705.

    Article  CAS  Google Scholar 

  28. 28.

    Lin SH, Juang RS. Heavy metal removal from water by sorption using surfactant modified montmorillonite. J Hazard Mater. 2002;B 92:315–26.

    Article  Google Scholar 

  29. 29.

    Lu S, Gibb SW, Cochrane E. Effective removal of zinc ions from aqueous solutions using crab carapace biosorbent. J Hazard Mater. 2007;149:208–17.

    Article  CAS  Google Scholar 

  30. 30.

    Mohamed SH, El-Gendy AA, Abdel-kader AH, El-Ashkar EA. Removal of heavy metals from water by adsorption on chitin derivatives. DerPharmaChemica. 2015;7(10):275–83.

    CAS  Google Scholar 

  31. 31.

    Mohanty SR. Removal of hexavalent chromium using chitosan prepared from the shrimp and crab shells. National Institute of Technology Rourkela, India: Thesis submitted to Department of Chemical Engineering; 2015.

    Google Scholar 

  32. 32.

    Morris A, Beeram S, Hardaway CJ, Richert JC, Sneddon J. Use of ground crawfish shells for the removal of chromium in solution. Microchem J. 2012;105:2–8.

    Article  CAS  Google Scholar 

  33. 33.

    Muhaemin M. Chelating ability of crab shell particles and extracted acetamido groups (chitin and chitosan) from Portunus spp. to lead (Pb2+). Journal of Coastal Development. 2005;9(1):1–7.

    Google Scholar 

  34. 34.

    Muslim T, Alam MT, Begum HA, Alam SS. Synthesis of some chitosan derivatives and their iron(II) adsorption behavior- a class of pharmaceutically important biosorbents. Bangladesh Pharmaceutical Journal. 2014;17(2):193–201.

    Article  Google Scholar 

  35. 35.

    Niu Y, Ying D, Li K, Wang Y, Jia J. Adsorption of heavy-metal ions from aqueous solution onto chitosan-modified polyethylene terephthalate (PET). Res Chem Intermed. 2017;43:4213–25.

    Article  CAS  Google Scholar 

  36. 36.

    Okoronkwo AE, Owolabi BJ, Ayodele O. Biosorption of nickel and copper from a mixed metals solution using chitosan derived from crabs. Current Journal of Applied Science and Technology. 2014;4(26):3769–84.

    Article  Google Scholar 

  37. 37.

    Olohigbe AB, Etiosa OR, Wesley O. Highly deacetylated chitosan as low-cost adsorbent material for removal of heavy metals from water. Asian Journal of Physical and Chemical Sciences. 2018;5(2):1–7.

    Article  Google Scholar 

  38. 38.

    Ouyang D, Zhuo Y, Hu L, Zeng Q, Hu Y, He Z. Research on the adsorption behavior of heavy metal ions by porous material prepared with silicate tailings. Minerals. 2019;9:291–306.

    Article  CAS  Google Scholar 

  39. 39.

    Pinto PX, Al-Abed SR, Reisman DJ. Biosorption of heavy metals from mining influenced water onto chitin products. Chem Eng J. 2011;166:1002–9.

    Article  CAS  Google Scholar 

  40. 40.

    Pradhan S, Shukla SS, Dorris KL. Removal of nickel from aqueous solutions using crab shells. J Hazard Mater. 2005;B125:201–4.

    Article  CAS  Google Scholar 

  41. 41.

    Qi L, Xu Z. Lead sorption from aqueous solutions on chitosan nanoparticles. Colloids and surfaces a: Physicochem. Eng. Aspects. 2004;251:183–90.

    Article  CAS  Google Scholar 

  42. 42.

    Rae IB, Gibb SW, Lu S. Biosorption of hg from aqueous solutions by crab carapace. J Hazard Mater. 2009;164:1601–4.

    Article  CAS  Google Scholar 

  43. 43.

    Ramalingam S, Parthiban L, Rangasamy P. Biosorption modeling with multilayer perceptron for removal of lead and zinc ions using crab shell particles. Arab J Sci Eng. 2014;39:8465–75.

    Article  CAS  Google Scholar 

  44. 44.

    Rana MS, Halim MA, Safiullah S, Mollah MM, Azam MS, Goni MA, et al. Removal of heavy metal from contaminated water by biopolymer crab shell chitosan. J Appl Sci. 2009;9(15):2762–9.

    Article  CAS  Google Scholar 

  45. 45.

    Rodríguez MS, Zalba M, Goitía MT, Pugliese A, Debbaudt A, Agulló E, et al. Calcareous chitin: a novel low-cost sorbent for cadmium(II). Lat Am Appl Res. 2012;42:311–8.

    Google Scholar 

  46. 46.

    Sakthivel D, Vijayakumar N, Anandan V. Extraction of chitin and chitosan from mangrove crab Sesarmaplicatumfrom Thengaithittu estuary Pondicherry southeast coast of India. International Journal of Pharmacy & Pharmaceutical Research. 2015;4(1):12–24.

    CAS  Google Scholar 

  47. 47.

    Sugiyanti D, Darmadji P, Anggrahini S, Anwar C, Santoso U. Preparation and characterization of chitosan from Indonesian TambakLorok shrimp shell waste and crab shell waste. Pak J Nutr. 2018;17(9):446–53.

    Article  CAS  Google Scholar 

  48. 48.

    Tudor HEA, Gryte CC, Harris CC. Seashells: detoxifying agents for metal-contaminated waters. Water Air Soil Pollut. 2006;173:209–42.

    Article  CAS  Google Scholar 

  49. 49.

    Unagolla JM, Adikary SU. Adsorption of cadmium and lead heavy metals by chitosan biopolymer: a study on equilibrium isotherms and kinetics. IEEE Moratuwa Engineering Research Conference (MERCon). 2015:234–9.

  50. 50.

    Vakili M, Deng S, Cagnetta G, Wang W, Meng P, Liu D, et al. Regeneration of chitosan-based adsorbents used in heavy metal adsorption: a review. Sep Purif Technol. 2019;224:373–87.

    Article  CAS  Google Scholar 

  51. 51.

    Vijayaraghavan K, Jegan J, Palanivelu K, Velan M. Removal of nickel(II) ions from aqueous solution using crab shell particles in a packed bed up-flow column. J Hazard Mater. 2004;B113:223–30.

    Article  CAS  Google Scholar 

  52. 52.

    Vijayaraghavan K, Jegan JR, Palanivelu K, Velan M. Nickel recovery from aqueous solution using crab shell particles. Adsorpt Sci Technol. 2005a;23(4):303–11.

    Article  CAS  Google Scholar 

  53. 53.

    Vijayaraghavan K, Palanivelub K, Velan M. Crab shell-based biosorption technology for the treatment of nickel-bearing electroplating industrial effluents. J Hazard Mater. 2005b;B119:251–4.

    Article  CAS  Google Scholar 

  54. 54.

    Vijayaraghavan K, Thilakavathi M, Palanivelu K, Velan M. Continuous sorption of copper and cobalt by crab shell particles in a packed column. Environ Technol. 2005c;26(3):267–76.

    Article  CAS  Google Scholar 

  55. 55.

    Vijayaraghavan K, Palanivelu K, Velan M. Biosorption of copper(II) and cobalt(II) from aqueous solutions by crab shell particles. Bioresour Technol. 2006;97:1411–9.

    Article  CAS  Google Scholar 

  56. 56.

    Vootla S, Richert JC, Hardaway CJ, Sneddon J. Investigation of crawfish (Procambrus clarkii) shells for uptake and removal of lead in water. Anal Lett. 2011;44:2229–43.

    Article  CAS  Google Scholar 

  57. 57.

    Wan Ngah WS, Ab Ghani S, Kamari A. Adsorption behaviour of Fe(II) and Fe(III) ions in aqueous solution on chitosan and cross-linked chitosan beads. Bioresour Technol. 2005;96:443–50.

    Article  CAS  Google Scholar 

  58. 58.

    Wan Ngah WS, Teong LC, Hanafiah MAKM. 2011. Adsorption of dyes and heavy metal ions by chitosan composites: a review. Carbohydr Polym. 2011;83:1446–56.

    Article  CAS  Google Scholar 

  59. 59.

    Wang T, Liu W, Xu N, Ni J. Adsorption and desorption of cd(II) onto titanate nanotubes and efficient regeneration of tubular structures. J Hazard Mater. 2013;250–251:379–86.

    Article  CAS  Google Scholar 

  60. 60.

    Yen M-T, Yang J-H, Mau J-L. Physicochemical characterization of chitin and chitosan from crab shells. Carbohydr Polym. 2009;75:15–21.

    Article  CAS  Google Scholar 

  61. 61.

    Yudhasasmita S, Nugroho AP. The use of chitosan of shrimp Penaeus sp. as cadmium adsorbent. Toxicol Environ Chem. 2015;96(7):1029–33.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the Social Development Program (BE2019687), Jiangsu, P.R. China.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xiuchen Qiao.

Ethics declarations

Conflict of interest

There are no conflicts of interest in terms of authorship and funding.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 114 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Alam, O., Qiao, X. & Nath, T.K. The effect of Ca-bearing contents in chitosan on Pb2+, Cd2+ and Cu2+ adsorption and its adsorption mechanism. J Environ Health Sci Engineer (2020). https://doi.org/10.1007/s40201-020-00556-y

Download citation

Keywords

  • Chitosan
  • Heavy metal
  • Adsorption
  • Biosorption
  • Precipitation
  • Crab