Magnetic carnosine-based metal-organic framework nanoparticles: fabrication, characterization and application as arsenic adsorbent

Abstract

This study centers on the controllable synthesis, characterization, and application of a novel magnetic bio-metal-organic framework (Bio-MOF) for the adsorption and subsequent removal of arsenic from aqueous solutions. Zinc ions and carnosine (Car) were exploited to construct the Car-based MOF on the surface of magnetite (Fe3O4 NPs). The Magnetite precoating with Car led to an increase in the yield and the uniform formation of the magnetic MOF. The prepared magnetic Bio-MOF nanoparticles (Fe3O4-Car-MOF NPs) had semi-spherical shape with the size in the range of 35–77 nm, and the crystalline pattern of both magnetite and Car-based MOF. The NPs were employed as an adsorbent for arsenic (As) removal. The adsorption analyses revealed that all studied independent variables including pH, adsorbent dose, and initial arsenic concentration had a significant effect on the arsenic adsorption, and the adsorption data were well matched to the quadratic model. The predicted adsorption values were close to the experimental values confirming the validity of the suggested model. Furthermore, adsorbent dose and pH had a positive effect on arsenic removal, whereas arsenic concentration had a negative effect. The adsorption isotherm and kinetic studies both revealed that As adsorption fitted best to the Freundlich isotherm model. The maximum monolayer adsorption capacity (94.33 mg/g) was achieved at room temperature, pH of 8.5 and adsorbent dose of 0.4 g/L. Finally, the results demonstrated that the adsorbent could be efficiently applied for arsenic removal from aqueous environment.

Graphical abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    Ansari A, Vahedi S, Tavakoli O, Khoobi M, Faramarzi MA. Novel Fe3O4/hydroxyapatite/β-cyclodextrin nanocomposite adsorbent: synthesis and application in heavy metal removal from aqueous solution. Appl Organomet Chem. 2019;33 https://doi.org/10.1002/aoc.4634.

  2. 2.

    Ashrafi S, Nasseri S, Alimohammadi M, Mahvi A, Faramarzi M. Optimization of the enzymatic elimination of flumequine by laccase-mediated system using response surface methodology. Desalin Water Treat. 2016;57:14478–87. https://doi.org/10.1080/19443994.2015.1063462.

    CAS  Article  Google Scholar 

  3. 3.

    Badi MY, Azari A, Pasalari H, Esrafili A, Farzadkia M. Modification of activated carbon with magnetic Fe3O4 nanoparticle composite for removal of ceftriaxone from aquatic solutions. J Mol Liq. 2018;261:146–54. https://doi.org/10.1016/j.molliq.2018.04.019.

    CAS  Article  Google Scholar 

  4. 4.

    Baziar M, Azari A, Karimaei M, Gupta VK, Agarwal S, Sharafi K, Maroosi M, Shariatifar N, Dobaradaran S. MWCNT-Fe3O4 as a superior adsorbent for microcystins LR removal: investigation on the magnetic adsorption separation, artificial neural network modeling, and genetic algorithm optimization. J Mol Liq. 2017;241:102–13. https://doi.org/10.1016/j.molliq.2017.06.014.

    CAS  Article  Google Scholar 

  5. 5.

    Brown WE, Schroeder LW, Ferris JS. Interlayering of crystalline octacalcium phosphate and hydroxylapatite. JPhCh. 1979;83:3314–9. https://doi.org/10.1021/j100489a002.

    CAS  Article  Google Scholar 

  6. 6.

    Cheng Z, Fu F, Dionysiou DD, Tang B. Adsorption, oxidation, and reduction behavior of arsenic in the removal of aqueous As (III) by mesoporous Fe/Al bimetallic particles. Water Res. 2016;96:22–31. https://doi.org/10.1016/j.watres.2016.03.020.

    CAS  Article  Google Scholar 

  7. 7.

    Chirenje T, Ma LQ, Chen M, Zillioux EJ. Comparison between background concentrations of arsenic in urban and non-urban areas of Florida. Adv Environ Res. 2003;8:137–46. https://doi.org/10.1016/S1093-0191(02)00138-7.

    CAS  Article  Google Scholar 

  8. 8.

    Dobaradaran S. Nabizadeh Nodehi R. Yaghmaeian K. Jaafari J. Hazrati Niari M. Kumar Bharti A. Agarwal Sh. Kumar Gupta V. Azari A. Shariatifar N. Catalytic decomposition of 2-chlorophenol using an ultrasonic-assisted Fe 3 O 4–TiO 2@ MWCNT system: influence factors, pathway and mechanism study. J Colloid Interface Sci. 2018;512:172–189. https://doi.org/10.1016/j.jcis.2017.10.015.

  9. 9.

    Doonan C, Riccò R, Liang K, Bradshaw D, Falcaro P. Metal–organic frameworks at the biointerface: synthetic strategies and applications. Acc Chem Res. 2017;50:1423–32. https://doi.org/10.1021/acs.accounts.7b00090.

    CAS  Article  Google Scholar 

  10. 10.

    Durmus Z, Kavas H, Baykal A, Sozeri H, Alpsoy L, Çelik S, Toprak M. Synthesis and characterization of l-carnosine coated iron oxide nanoparticles. JAllC. 2011;509:2555–61. https://doi.org/10.1016/j.jallcom.2010.11.088.

    CAS  Article  Google Scholar 

  11. 11.

    Gholibegloo E, Karbasi A, Pourhajibagher M, Chiniforush N, Ramazani A, Akbari T, Bahador A, Khoobi M. Carnosine-graphene oxide conjugates decorated with hydroxyapatite as promising nanocarrier for ICG loading with enhanced antibacterial effects in photodynamic therapy against Streptococcus mutans. J Photochem Photobiol B Biol. 2018;181:14–22. https://doi.org/10.1016/j.jphotobiol.2018.02.004.

    CAS  Article  Google Scholar 

  12. 12.

    Hameed B, Din AM, Ahmad A. Adsorption of methylene blue onto bamboo-based activated carbon: kinetics and equilibrium studies. J Hazard Mater. 2007;141:819–25. https://doi.org/10.1016/j.jhazmat.2006.07.049.

    CAS  Article  Google Scholar 

  13. 13.

    Holkar CR, Jadhav AJ, Pinjari DV, Mahamuni NM, Pandit AB. A critical review on textile wastewater treatments: possible approaches. J Environ Manag. 2016;182:351–66. https://doi.org/10.1016/j.jenvman.2016.07.090.

    CAS  Article  Google Scholar 

  14. 14.

    Horcajada P, Chalati T, Serre C, Gillet B, Sebrie C, Baati T, Eubank JF, Heurtaux D, Clayette P, Kreuz C. Porous metal–organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat Mater. 2010;9:172–8. https://doi.org/10.1038/nmat2608.

    CAS  Article  Google Scholar 

  15. 15.

    Hu P, Morabito JV, Tsung C-K. Core–shell catalysts of metal nanoparticle core and metal–organic framework shell. ACS Catal. 2014;4:4409–19. https://doi.org/10.1021/cs5012662.

    CAS  Article  Google Scholar 

  16. 16.

    Imaz I, Rubio-Martínez M, An J, Sole-Font I, Rosi NL, Maspoch D. Metal–biomolecule frameworks (MBioFs). ChCom. 2011;47:7287–302. https://doi.org/10.1039/C1CC11202C.

    CAS  Article  Google Scholar 

  17. 17.

    Javid A, Nasseri S, Mesdaghinia A, Hossein Mahvi A, Alimohammadi M, Aghdam RM, Rastkari N. Performance of photocatalytic oxidation of tetracycline in aqueous solution by TiO 2 nanofibers. J Environ Health Sci Eng. 2013;11:24.

    Article  Google Scholar 

  18. 18.

    Jomova K, Jenisova Z, Feszterova M, Baros S, Liska J, Hudecova D, Rhodes C, Valko M. Arsenic: toxicity, oxidative stress and human disease. J Appl Toxicol. 2011; https://doi.org/10.1002/jat.1649.

  19. 19.

    Katsoulidis AP, Park KS, Antypov D, Martí-Gastaldo C, Miller GJ, Warren JE, Robertson CM, Blanc F, Darling GR, Berry NG. Guest-adaptable and water-stable peptide-based porous materials by Imidazolate side chain control. Angew Chem. 2014;53:193–8. https://doi.org/10.1002/anie.201307074.

    CAS  Article  Google Scholar 

  20. 20.

    Ke F, Luo G, Chen P, Jiang J, Yuan Q, Cai H, Peng C, Wan X. Porous metal–organic frameworks adsorbents as a potential platform for defluoridation of water. JPMat. 2016;23:1065–73. https://doi.org/10.1007/s10934-016-0164-5.

    CAS  Article  Google Scholar 

  21. 21.

    Ke F, Jiang J, Li Y, Liang J, Wan X, Ko S. Highly selective removal of Hg2+ and Pb2+ by thiol-functionalized Fe3O4@ metal-organic framework core-shell magnetic microspheres. ApSS. 2017;413:266–74. https://doi.org/10.1016/j.apsusc.2017.03.303.

    CAS  Article  Google Scholar 

  22. 22.

    Ke F, Peng C, Zhang T, Zhang M, Zhou C, Cai H, Zhu J, Wan X. Fumarate-based metal-organic frameworks as a new platform for highly selective removal of fluoride from brick tea. Sci Rep. 2018;8:939. https://doi.org/10.1038/s41598-018-19277-2.

    CAS  Article  Google Scholar 

  23. 23.

    Ke F, Zhang M, Qin N, Zhao G, Chu J, Wan X. Synergistic antioxidant activity and anticancer effect of green tea catechin stabilized on nanoscale cyclodextrin-based metal–organic frameworks. JMatS. 2019;54:10420–9. https://doi.org/10.1007/s10853-019-03604-7.

    CAS  Article  Google Scholar 

  24. 24.

    Khan NA, Jhung SH. Adsorptive removal and separation of chemicals with metal-organic frameworks: contribution of π-complexation. J Hazard Mater. 2017;325:198–213. https://doi.org/10.1016/j.jhazmat.2016.11.070.

    CAS  Article  Google Scholar 

  25. 25.

    Khan NA, Hasan Z, Jhung SH. Adsorptive removal of hazardous materials using metal-organic frameworks (MOFs): a review. J Hazard Mater. 2013;244–245:444–56. https://doi.org/10.1016/j.jhazmat.2012.11.011.

    CAS  Article  Google Scholar 

  26. 26.

    Ma YJ, Jiang XX, Lv YK. Recent advances in preparation and applications of magnetic framework composites. Chem–Asian J. 2019; https://doi.org/10.1002/asia.201901139.

  27. 27.

    Mesdaghinia A, Azari A, Nodehi RN, Yaghmaeian K, Bharti AK, Agarwal S, Gupta VK, Sharafi K. Removal of phthalate esters (PAEs) by zeolite/Fe3O4: investigation on the magnetic adsorption separation, catalytic degradation and toxicity bioassay. J Mol Liq. 2017;233:378–90. https://doi.org/10.1016/j.molliq.2017.02.094.

    CAS  Article  Google Scholar 

  28. 28.

    Nejadshafiee V, Naeimi H, Goliaei B, Bigdeli B, Sadighi A, Dehghani S, Lotfabadi A, Hosseini M, Nezamtaheri MS, Amanlou M. Magnetic bio-metal–organic framework nanocomposites decorated with folic acid conjugated chitosan as a promising biocompatible targeted theranostic system for cancer treatment. Mater Sci Eng C. 2019;99:805–15. https://doi.org/10.1016/j.msec.2019.02.017.

    CAS  Article  Google Scholar 

  29. 29.

    Pourkarim S, Ostovar F, Mahdavianpour M, Moslemzadeh M. Adsorption of chromium (VI) from aqueous solution by artist’s bracket fungi. SS&T. 2017;52:1733–41. https://doi.org/10.1080/01496395.2017.1299179.

    CAS  Article  Google Scholar 

  30. 30.

    Prathna T, Sharma SK, Kennedy M. Nanoparticles in household level water treatment: an overview. Sep Purif Technol. 2018;199:260–70. https://doi.org/10.1016/j.seppur.2018.01.061.

    CAS  Article  Google Scholar 

  31. 31.

    Ricco R, Konstas K, Styles MJ, Richardson JJ, Babarao R, Suzuki K, Scopece P, Falcaro P. Lead (II) uptake by aluminium based magnetic framework composites (MFCs) in water. J Mater Chem A. 2015;3:19822–31. https://doi.org/10.1039/C5TA04154F.

    CAS  Article  Google Scholar 

  32. 32.

    Rojas S, Devic T, Horcajada P. Metal organic frameworks based on bioactive components. J Mater Chem B. 2017;5:2560–73. https://doi.org/10.1039/C6TB03217F.

    CAS  Article  Google Scholar 

  33. 33.

    Senthilkumaar S, Varadarajan P, Porkodi K, Subbhuraam CV. Adsorption of methylene blue onto jute fiber carbon: kinetics and equilibrium studies. J Colloid Interface Sci. 2005;284:78–82. https://doi.org/10.1016/j.jcis.2004.09.027.

    CAS  Article  Google Scholar 

  34. 34.

    Sigdel A, Park J, Kwak H, Park P-K. Arsenic removal from aqueous solutions by adsorption onto hydrous iron oxide-impregnated alginate beads. J Ind Eng Chem. 2016;35:277–86. https://doi.org/10.1016/j.jiec.2016.01.005.

    CAS  Article  Google Scholar 

  35. 35.

    Soleimani H, Mahvi AH, Yaghmaeian K, Abbasnia A, Sharafi K, Alimohammadi M, Zamanzadeh M. Effect of modification by five different acids on pumice stone as natural and low-cost adsorbent for removal of humic acid from aqueous solutions-application of response surface methodology. J Mol Liq. 2019;290:111181. https://doi.org/10.1016/j.molliq.2019.111181.

    CAS  Article  Google Scholar 

  36. 36.

    Spanopoulos I, Tsangarakis C, Klontzas E, Tylianakis E, Froudakis G, Adil K, Belmabkhout Y, Eddaoudi M, Trikalitis PN. Reticular synthesis of HKUST-like tbo-MOFs with enhanced CH4 storage. J Am Chem Soc. 2016;138:1568–74. https://doi.org/10.1021/jacs.5b11079.

    CAS  Article  Google Scholar 

  37. 37.

    Tapouk FA, Nabizadeh R, Nasseri S, Mesdaghinia A, Khorsandi H, Mahvi AH, Gholibegloo E, Alimohammadi M, Khoobi M. Endotoxin removal from aqueous solutions with dimethylamine-functionalized graphene oxide: modeling study and optimization of adsorption parameters. J Hazard Mater. 2019;368:163–77. https://doi.org/10.1016/j.jhazmat.2019.01.028.

    CAS  Article  Google Scholar 

  38. 38.

    Vadivelan V, Kumar KV. Equilibrium, kinetics, mechanism, and process design for the sorption of methylene blue onto rice husk. JCIS. 2005;286:90–100. https://doi.org/10.1016/j.jcis.2005.01.007.

    CAS  Article  Google Scholar 

  39. 39.

    Verbruggen S, De Sutter S, Iliopoulos S, Aggelis D, Tysmans T. Experimental structural analysis of hybrid composite-concrete beams by digital image correlation (DIC) and acoustic emission (AE). JNE. 2016; https://doi.org/10.1007/s1092.

  40. 40.

    Wan W, Pepping TJ, Banerji T, Chaudhari S, Giammar DE. Effects of water chemistry on arsenic removal from drinking water by electrocoagulation. Water Res. 2011;45:384–92. https://doi.org/10.1016/j.watres.2010.08.016.

    CAS  Article  Google Scholar 

  41. 41.

    Xiao Y, Zhang C, Qin Y, Wu C, Zheng X. Highly efficient removal of As (V) from aqueous solutions using a novel octanuclear Zn (II)-based polymer: synthesis, structure, properties and optimization using a response surface methodology. J Solid State Chem. 2018;264:6–14. https://doi.org/10.1016/j.jssc.2018.04.030.

    CAS  Article  Google Scholar 

  42. 42.

    Zarei H, Nasseri S, Nabizadeh R, Shemirani F, Dalvand A, Mahvi AH. Modeling of arsenic removal from aqueous solution by means of MWCNT/alumina nanocomposite. Desalin Water Treat. 2017;67:196–205. https://doi.org/10.5004/dwt.2017.20402.

    CAS  Article  Google Scholar 

  43. 43.

    Zhao G, Qin N, Pan A, Wu X, Peng C, Ke F, Iqbal M, Ramachandraiah K, Zhu J. Magnetic nanoparticles@ metal-organic framework composites as sustainable environment adsorbents. J Nanomater. 2019;2019:1–11. https://doi.org/10.1155/2019/1454358.

    CAS  Article  Google Scholar 

  44. 44.

    Zhu Q-L, Xu Q. Metal–organic framework composites. ChSRv. 2014;43:5468–512. https://doi.org/10.1039/C3CS60472A.

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant from the National Institute for Medical Research Development (NIMAD, Grant no. 963397).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Mehdi Khoobi or Mahmood Alimohammadi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Authors “Maryam Keykhaee and Maryam Razaghi” have the same contribution to this paper.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Keykhaee, M., Razaghi, M., Dalvand, A. et al. Magnetic carnosine-based metal-organic framework nanoparticles: fabrication, characterization and application as arsenic adsorbent. J Environ Health Sci Engineer (2020). https://doi.org/10.1007/s40201-020-00535-3

Download citation

Keywords

  • Peptide-based metal-organic framework
  • Magnetic nanoparticles
  • Carnosine
  • Arsenic removal
  • Quadratic model