Skip to main content

Advertisement

Log in

The mercury level in hair and breast milk of lactating mothers in Iran: a systematic review and meta-analysis

  • Review article
  • Published:
Journal of Environmental Health Science and Engineering Aims and scope Submit manuscript

Abstract

Exposure to mercury is one of the major global health concerns due to its stability, bioaccumulation and high toxicity. Therefore, the present study was conducted to assess the mean mercury level in hair and breast milk (BM) of Iranian lactating mothers (ILMs) through meta-analysis technique. We conducted a systematic literature search in online electronic databases included main domestic databases (SID, Magiran, Iran medex, Medlib and ISC) and international databases (Embase, Scopus and PubMed) for studies published between 2000 up 2018. Each process of research and evaluation of articles based on inclusion and exclusion criteria is done by two researchers, individually. From10 studies entered to meta-analysis process including 556 ILM, the mean hair mercury level (HML) and mean milk mercury level (MML) was estimated to be 0.15 μg/g (95 CI: 0.11–0.19, I2: 47.6%, P: 0.028) and 0.51 μg/l (95 CI: 0.28–0.74, I2: 1.9%, P: 0.421), respectively. In this meta-analysis, the mean HML and mean MML were estimated to be lower than the standard of World Health Organization (WHO). Although the mean mercury level in hair and BM of ILMs was lower than the WHO standard, but due to toxicity and serious concern of health, management and Periodic monitor are recommended in different cities of the country for evaluate the mercury levels in hair and BM of ILMs and to estimate the infant’s exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

WHO:

World Health Organization

MML:

milk mercury level

HML:

hair mercury level

SD:

standard deviation

HBM:

human Breast Milk

BM:

Breast Milk

ILMs:

Iranian lactating mothers

References

  1. Saleh HN, Panahande M, Yousefi M, Asghari FB, Conti GO, Talaee E, et al. Carcinogenic and non-carcinogenic risk assessment of heavy metals in groundwater wells in Neyshabur Plain, Iran. Biological trace element research. 2019;190(1):251–61.

  2. ATSDR. The priority list of hazardous substances that will be the candidates for toxicological profiles. . Agency for Toxic Substances and Disease Registry. 2015.

  3. Sundseth K, Pacyna JM, Pacyna EG, Pirrone N, Thorne RJ. Global sources and pathways of mercury in the context of human health. International Journal Of Environmental Research And Public Health. 2017;14(1):105. PubMed PMID. https://doi.org/10.3390/ijerph14010105.

    Article  CAS  Google Scholar 

  4. Kim K. H, Kabir E, Jahan S. A. A review on the distribution of Hg in the environment and its human health impacts. Journal of Hazardous Materials. 2016 2016/04/05/;306:376–385.

  5. Streets D. G, Horowitz H. M, Jacob D. J, Lu Z, Levin L, ter Schure A. F. H, et al. Total Mercury Released to the Environment by Human Activities. Environmental Science & Technology. 2017 2017/06/06;51(11):5969–5977.

  6. Streets D. G, Horowitz H. M, Lu Z, Levin L, Thackray C. P, Sunderland E. M. Global and regional trends in mercury emissions and concentrations, 2010–2015. Atmospheric Environment. 2019 2019/03/15/;201:417–427.

  7. UNEP. Global Mercury Assessment 2013: Sources, emissions, releases and environmental transport. UNEP Chemicals Branch, Geneva, Switzerland: United Nations Environment Programme; 2013.

  8. Guzzi G, La Porta C. A. M. Molecular mechanisms triggered by mercury. Toxicology. 2008 2008/02/03/;244(1):1–12.

  9. Coulter M. A. Minamata Convention on Mercury. International Legal Materials, Cambridge University Press. 2017;55(3):582–616. Epub 01/20.

  10. UNEP, WHO. Guidance for identifying populations at risk from mercury exposure. Issued by UNEP DTIE Chemicals Branch and WHO Department of Food Safety, Zoonoses and Foodborne Diseases. . Geneva, Switzerland: United Nations Environment Programme / World Health Organization: https://www.who.int/foodsafety/publications/risk-mercury-exposure/en/; 2008.

  11. Rice KM, Walker EM Jr, Wu M, Gillette C, Blough ER. Environmental mercury and its toxic effects. J Prev Med Public Health. 2014;47(2):74–83 Epub 03/31. eng.

    Article  Google Scholar 

  12. Magos L, Clarkson TW. Overview of the clinical toxicity of mercury. Ann Clin Biochem. 2006;43(4):257–68.

    Article  CAS  Google Scholar 

  13. Yusà V, Pérez R, Suelves T, Corpas-Burgos F, Gormáz M, Dualde P, et al. Biomonitoring of mercury in hair of breastfeeding mothers living in the Valencian Region (Spain). Levels and predictors of exposure. Chemosphere. 2017 2017/11/01/;187:106–113.

  14. Akramipour R, Golpayegani M. R, Gheini S, Fattahi N. Speciation of organic/inorganic mercury and total mercury in blood samples using vortex assisted dispersive liquid-liquid microextraction based on the freezing of deep eutectic solvent followed by GFAAS. Talanta. 2018 2018/08/15/;186:17–23.

  15. Clarkson T. W, Magos L. The Toxicology of Mercury and Its Chemical Compounds. Critical Reviews in Toxicology. 2006 2006/01/01;36(8):609–662.

  16. de Souza S. S, Campiglia A. D, Barbosa F. A simple method for methylmercury, inorganic mercury and ethylmercury determination in plasma samples by high performance liquid chromatography–cold-vapor-inductively coupled plasma mass spectrometry. Analytica Chimica Acta. 2013 2013/01/25/;761:11–17.

  17. Marín S, Pardo O, Báguena R, Font G, Yusà V. Dietary exposure to trace elements and health risk assessment in the region of Valencia, Spain: a total diet study. Food Additives & Contaminants: Part A. 2017 2017/02/01;34(2):228–240.

  18. Akerstrom M, Barregard L, Lundh T, Sallsten G. Relationship between mercury in kidney, blood, and urine in environmentally exposed individuals, and implications for biomonitoring. Toxicology and Applied Pharmacology. 2017 2017/04/01/;320:17–25.

  19. Gibb H, O’Leary KG. Mercury exposure and health impacts among individuals in the artisanal and small-scale gold mining community: a comprehensive review. Environ Health Perspect. 2014;122(7):667–72.

    Article  CAS  Google Scholar 

  20. Bjørklund G, Tinkov AA, Dadar M, Rahman MM, Chirumbolo S, Skalny AV, et al. Insights into the potential role of mercury in Alzheimer’s disease. J Mol Neurosci. 2019;67(4):511–33.

    Google Scholar 

  21. Kröger E, Laforce R. Fish consumption, brain mercury, and neuropathology in patients with Alzheimer disease and dementia. Jama. 2016;315(5):465–6.

    Article  Google Scholar 

  22. Zellner T, Zellner N, Felgenhauer N, Eyer F., Epilepsy and polyneuropathy in a mercury-exposed patient: investigation, identification of an obscure source and treatment. Case Reports. Dementia. 2016;2016:bcr2016216835.

  23. Nabi S. Methylmercury and parkinson’s disease. Toxic Effects of Mercury: Springer; 2014. p. 211–8.

    Google Scholar 

  24. Kim D, Kang YW, Park SW, Lee KH, Lee YS. Relationship of hair copper and mercury contents to personality in chronic schizophrenia. J Prev Med Public Health. 1990;23(3):296–308.

    Google Scholar 

  25. Peplow D, Augustine S. Neurological abnormalities in a mercury exposed population among indigenous Wayana in Southeast Suriname. Environmental Science: Processes & Impacts. 2014;16(10):2415–22.

    CAS  Google Scholar 

  26. Rana MN, Tangpong J, Rahman MM. Toxicodynamics of lead, cadmium, mercury and arsenic-induced kidney toxicity and treatment strategy: a mini review. Toxicol Rep. 2018;5:704–13.

    Article  CAS  Google Scholar 

  27. Bridges CC, Zalups RK. The aging kidney and the nephrotoxic effects of mercury. Journal of Toxicology and Environmental Health, Part B. 2017;20(2):55–80.

    Article  CAS  Google Scholar 

  28. Duruibe JO, Ogwuegbu M, Egwurugwu J. Heavy metal pollution and human biotoxic effects. International Journal of physical sciences. 2007;2(5):112–8.

    Google Scholar 

  29. Abdel-Rasul GM, Abu-Salem MA, Al-Batanony MA, Al-Dalatony MM, Allam HK. Neurobehavioral, respiratory, and auditory disorders among mercury-exposed fluorescent lamp workers. Menoufia Medical Journal. 2013;26(1):58.

    Google Scholar 

  30. Lim HE, Shim JJ, Lee SY, Lee SH, Kang SY, Jo JY, et al. Mercury inhalation poisoning and acute lung injury. Korean J Intern Med. 1998;13(2):127–30 eng.

    Article  CAS  Google Scholar 

  31. Smiechowicz J, Skoczynska A, Nieckula-Szwarc A, Kulpa K, Kübler A. Occupational mercury vapour poisoning with a respiratory failure, pneumomediastinum and severe quadriparesis. SAGE Open Med Case Rep. 2017;5:2050313X17695472-2050313X. eng.

  32. Gardner R. M, Nyland J. F. Immunotoxic effects of mercury. Environmental Influences on the Immune System: Springer; 2016. p. 273–302.

  33. Rooney J. Further thoughts on mercury, epigenetics, genetics and amyotrophic lateral sclerosis. Neurodegener Dis. 2011;8(6):523–4.

    Article  Google Scholar 

  34. Basu N, Goodrich JM, Head J. Ecogenetics of mercury: from genetic polymorphisms and epigenetics to risk assessment and decision-making. Environ Toxicol Chem. 2014;33(6):1248–58.

    Article  CAS  Google Scholar 

  35. Boffetta P, Sällsten G, Garcia-Gómez M, Pompe-Kirn V, Zaridze D, Bulbulyan M, et al. Mortality from cardiovascular diseases and exposure to inorganic mercury. Occup Environ Med. 2001;58(7):461–6.

    Article  CAS  Google Scholar 

  36. Mozaffarian D, Shi P, Morris JS, Spiegelman D, Grandjean P, Siscovick DS, et al. Mercury exposure and risk of cardiovascular disease in two U.S. cohorts. N Engl J Med. 2011;364(12):1116–25.

    Article  CAS  Google Scholar 

  37. Genchi G, Sinicropi MS, Carocci A, Lauria G, Catalano A. Mercury Exposure and Heart Diseases. International journal of environmental research and public health. 2017;14(1):74 eng.

    Article  CAS  Google Scholar 

  38. Houston MC. Role of mercury toxicity in hypertension, cardiovascular disease, and stroke. The Journal of Clinical Hypertension. 2011;13(8):621–7.

    Article  CAS  Google Scholar 

  39. Mocevic E, Specht I. O, Marott J. L, Giwercman A, Jönsson B. A. G, Toft G, et al. Environmental mercury exposure, semen quality and reproductive hormones in Greenlandic Inuit and European men: a cross-sectional study. Asian J Androl. 2013;15(1):97–104. Epub 12/10. eng.

  40. Henriques M. C, Loureiro S, Fardilha M, Herdeiro M. T. Exposure to mercury and human reproductive health: A systematic review. Reproductive Toxicology. 2019 2019/04/01/;85:93–103.

  41. Crump KL, Trudeau VL. Mercury-induced reproductive impairment in fish. Environmental Toxicology and Chemistry. An International Journal. 2009;28(5):895–907.

    CAS  Google Scholar 

  42. Cerbino MR, Vieira JCS, Braga CP, Oliveira G, Padilha IF, Silva TM, et al. Metalloproteomics approach to analyze mercury in breast Milk and hair samples of lactating women in communities of the Amazon Basin. Brazil Biological Trace Element Research. 2018;181(2):216–26.

    Article  CAS  Google Scholar 

  43. Henck J. W. Reproductive Toxicology In: Raymond D. Harbison MMB, and Giffe T. Johnson, editor. Hamilton and Hardy's Industrial Toxicology. 6nd ed Hoboken, New Jersey: Wiley, Inc 2015. p. 1197–1228.

  44. Jensen AA. Chemical contaminants in human milk. In: GJD GFA, editor. Residue reviews. 89. New York: Springer; 1983. p. 1–128.

    Google Scholar 

  45. Al-Saleh I, Abduljabbar M, Al-Rouqi R, Elkhatib R, Alshabbaheen A, Shinwari N. Mercury (hg) exposure in breast-fed infants and their mothers and the evidence of oxidative stress. Biol Trace Elem Res. 2013;153(1–3):145–54 Epub 2013/05/11. eng.

    Article  CAS  Google Scholar 

  46. Bose-O'Reilly S, McCarty K. M, Steckling N, Lettmeier B. Mercury exposure and children's health. Curr Probl Pediatr Adolesc Health Care. 2010;40(8):186–215. eng.

  47. Jedrychowski W, Jankowski J, Flak E, Skarupa A, Mroz E, Sochacka-Tatara E, et al. Effects of prenatal exposure to mercury on cognitive and psychomotor function in one-year-old infants: epidemiologic cohort study in Poland. Ann Epidemiol. 2006;16(6):439–47 Epub 2005/11/09. eng.

    Article  Google Scholar 

  48. Díez S, Montuori P, Pagano A, Sarnacchiaro P, Bayona J. M, Triassi M. Hair mercury levels in an urban population from southern Italy: Fish consumption as a determinant of exposure. Environment International. 2008 2008/02/01/;34(2):162–167.

  49. WHO, IAEA. Minor and trace elements in breast milk : report of a joint WHO/IAEA collaborative study. Geneva: World Health Organization; 1989.

    Google Scholar 

  50. Bansa D. K, Awua A. K, Boatin R, Adom T, Brown-Appiah E. C, Amewosina K. K, et al. Cross-sectional assessment of infants’ exposure to toxic metals through breast milk in a prospective cohort study of mining communities in Ghana. BMC Public Health. 2017 2017/05/25;17(1):505.

  51. Cherkani-Hassani A, Ghanname I, Mouane N. Total, organic, and inorganic mercury in human breast milk: levels and maternal factors of exposure, systematic literature review, 1976–2017. Critical Reviews in Toxicology. 2019 2019/02/07;49(2):110–121.

  52. Sharma B. M, Sáňka O, Kalina J, Scheringer M. An overview of worldwide and regional time trends in total mercury levels in human blood and breast milk from 1966 to 2015 and their associations with health effects. Environment International. 2019 2019/04/01/;125:300–319.

  53. Moher D, Liberati A, Tetzlaff J, Altman DG, The PG. Preferred reporting items for systematic reviews and Meta-analyses: The PRISMA statement. PLoS Med. 2009;6(7):e1000097.

    Article  Google Scholar 

  54. Margulis AV, Pladevall M, Riera-Guardia N, Varas-Lorenzo C, Hazell L, Berkman ND, et al. Quality assessment of observational studies in a drug-safety systematic review, comparison of two tools: the Newcastle–Ottawa scale and the RTI item bank. Clinical epidemiology. 2014;6:359.

    Article  Google Scholar 

  55. Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21(11):1539–58 Epub 2002/07/12. eng.

    Article  Google Scholar 

  56. Bahmani P, Maleki A. Investigation of Mercury, Cadmium and Arsenic Levels in Breast Milk and Their Relationship with the Studied Parameters in Sanandaj, Iran. Zanko Journal of Medical Sciences. 2018;19(62):84–97. eng.

  57. Khammar S, Pourkhabbaz A, Dahmardeh Behrooz R. Examination of mercury concentration in the hair and Milk mothers and relation to number of dental amalgam filling and mother feeding case study : (city of Zahedan). Journal of Natural Environment. 2017;70(1):77–86.

    Google Scholar 

  58. Okati N, Sari A. E, Ghasempouri S. M. Hair Mercury Concentrations of Lactating Mothers and Breastfed Infants in Iran (Fish Consumption and Mercury Exposure). Biological Trace Element Research. 2012 2012/11/01;149(2):155–162.

  59. Savabieasfahani M, Hoseiny M, Goodarzi S. Toxic and Essential Trace Metals in First Baby Haircuts and Mother Hair from Imam Hossein Hospital Tehran, Iran. Bulletin of Environmental Contamination and Toxicology. 2012 2012/02/01;88(2):140–144.

  60. Ghasempouri SM, Okati N, Esmaili-Sari A. Mercury in Hair of Mothers and Infants: Influencing Factors Assessment in the Southern shores of the Caspian Sea (Iran). Iranian Jornal of Toxicology. 2012;3(3):335–46 eng.

    Google Scholar 

  61. Okati N, Esmaili Sari A, Ghasempouri M. Examination of Mercury Concentration in the Hair of Breast-Feeding Mothers and Relation to Fish Diet, Number of Dental Amalgam Filling, Age and Place of Live. Iranian Journal of Health and Environment. 2010;3(3):327–34 eng.

    Google Scholar 

  62. Okati N, Sari A. E, Ghasempouri S. M. Evaluation of mercury pollution in breast milk and Iranian infants’ hair. International Research Journal of Applied and Basic Sciences. 2013 01/01;4(9):2857–2864.

  63. Goudarzi M. A, Parsaei P, Nayebpour F, Rahimi E. Determination of mercury, cadmium and lead in human milk in Iran. Toxicology and Industrial Health. 2012 2013/10/01;29(9):820–823.

  64. Norouzi E, Bahramifar N, Ghasempouri S. M. Effect of teeth amalgam on mercury levels in the colostrums human milk in Lenjan. Environmental Monitoring and Assessment. 2012 2012/01/01;184(1):375–380.

  65. Dahmardeh Behrooz R, Esmaili-Sari A, Peer F. E, Amini M. Mercury Concentration in the Breast Milk of Iranian Women. Biological Trace Element Research. 2012 2012/06/01;147(1):36–43.

  66. Grzunov LetiniĿ J, Matek SariĿ M, Piasek M, JurasoviĿ J, Varnai V. M, Sulimanec Grgec A, et al. Use of human milk in the assessment of toxic metal exposure and essential element status in breastfeeding women and their infants in coastal Croatia. Journal of Trace Elements in Medicine and Biology. 2016 2016/12/01/;38:117–125.

  67. Gaxiola-Robles R, Labrada-Martagón V, Acosta-Vargas B, Méndez-Rodríguez LC, Zenteno-Savín T. Interaction between mercury (hg), arsenic (as) and selenium (se) affects the activity of glutathione S-transferase in breast milk; possible relationship with fish and shellfish intake. Nutricion hospitalaria. 2014;30(2):436–46.

    Google Scholar 

  68. García-Esquinas E, Pérez-Gómez B, Fernández M. A, Pérez-Meixeira A. M, Gil E, Paz C. D, et al. Mercury, lead and cadmium in human milk in relation to diet, lifestyle habits and sociodemographic variables in Madrid (Spain). Chemosphere. 2011 2011/09/01/;85(2):268–276.

  69. Dursun A, Yurdakok K, Yalcin S. S, Tekinalp G, Aykut O, Orhan G, et al. Maternal risk factors associated with lead, mercury and cadmium levels in umbilical cord blood, breast milk and newborn hair. The Journal of Maternal-Fetal & Neonatal Medicine. 2016 2016/03/18;29(6):954–961.

  70. Vieira S. M, de Almeida R, Holanda I. B. B, Mussy M. H, Galvão R. C. F, Crispim P. T. B, et al. Total and methyl-mercury in hair and milk of mothers living in the city of Porto Velho and in villages along the Rio Madeira, Amazon, Brazil. International Journal of Hygiene and Environmental Health. 2013 2013/11/01/;216(6):682–689.

  71. Da Cunha LR, da Costa THM, Caldas ED. Mercury concentration in breast milk and infant exposure assessment during the first 90 days of lactation in a midwestern region of Brazil. Biol Trace Elem Res. 2013;151(1):30–7.

    Article  CAS  Google Scholar 

  72. Örün E, Yalçin SS, Aykut O, Orhan G, Koç-Morgil G, Yurdakök K, et al. Mercury exposure via breast-milk in infants from a suburban area of Ankara, Turkey. Turk J Pediatr. 2012;54(2):136–43.

    Google Scholar 

  73. Yalçin SSY, Yurdakök K, Yalçin S, Engür-Karasimav D, Coskun T. Maternal and environmental determinants of breast-milk mercury concentrations. Turk J Pediatr. 2010;52(1):1–9.

    Google Scholar 

  74. Bose-O’Reilly S, Lettmeier B, Roider G, Siebert U, Drasch G. Mercury in breast milk – A health hazard for infants in gold mining areas? International Journal of Hygiene and Environmental Health. 2008 2008/10/01/;211(5):615–623.

  75. Abballe A, Ballard TJ, Dellatte E, A. D D, Ferri F, Fulgenzi AR, et al. Persistent environmental contaminants in human milk: Concentrations and time trends in Italy. Chemosphere. 2008;73(1, Supplement):S220–S7.

    Article  CAS  Google Scholar 

  76. Björnberg KA, Vahter M, Berglund B, Niklasson B, Blennow M, Sandborgh-Englund G. Transport of methylmercury and inorganic mercury to the fetus and breast-fed infant. Environ Health Perspect. 2005;113(10):1381–5.

    Article  CAS  Google Scholar 

  77. Boischio AAP, Henshel DS. Linear regression models of methyl mercury exposure during prenatal and early postnatal life among Riverside people along the upper Madeira River. Amazon Environmental Research. 2000;83(2):150–61.

    Article  CAS  Google Scholar 

  78. Da Costa SL, Malm O, Dórea JG. Breast-milk mercury concentrations and amalgam surface in mothers from Brasilia, Brazil. Biol Trace Elem Res. 2005;106(2):145–51.

    Article  Google Scholar 

  79. dos Santos FA, Cavecci B, Vieira JCS, Franzini VP, Santos A, de Lima LA, et al. A Metalloproteomics study on the Association of Mercury with Breast Milk in samples from lactating women in the Amazon region of Brazil. Arch Environ Contam Toxicol. 2015;69(2):223–9.

    Article  CAS  Google Scholar 

  80. Gaxiola-Robles R, Zenteno-Savín T, Labrada-Martagón V. Celis de la Rosa AdJ, Acosta Vargas B, Méndez-Rodríguez LC. Concentraciones de mercurio en leche de mujeres del noroeste de México: posible asociación a la dieta, tabaco y otros factores maternos. Nutr Hosp. 2013;28(3):934–42.

    CAS  Google Scholar 

  81. Abdulrazzaq YM, Osman N, Nagelkerke N, Kosanovic M, Adem A. Trace element composition of plasma and breast milk of well-nourished women. J Environ Sci Health A. 2008;43(3):329–34.

    Article  CAS  Google Scholar 

  82. Park Y, Lee A, Choi K, Kim HJ, Lee JJ, Choi G, et al. Exposure to lead and mercury through breastfeeding during the first month of life: a CHECK cohort study. Sci Total Environ. 2018;612:876–83.

    Article  CAS  Google Scholar 

  83. Kunter İ, Hürer N, Gülcan HO, Öztürk B, Doğan İ, Şahin G. Assessment of Aflatoxin M1 and heavy metal levels in mothers breast Milk in Famagusta. Cyprus Biological Trace Element Research. 2017;175(1):42–9.

    Article  CAS  Google Scholar 

  84. Al-Saleh I, Abduljabbar M, Al-Rouqi R, Eltabache C, Al-Rajudi T, Elkhatib R, et al. The extent of mercury (hg) exposure among Saudi mothers and their respective infants. Environ Monit Assess. 2015;187(11):678.

    Article  CAS  Google Scholar 

  85. Ursinyova M, Masanova V. Cadmium, lead and mercury in human milk from Slovakia. Food Additives & Contaminants. 2005;22(6):579–89.

    Article  CAS  Google Scholar 

  86. Gundacker C, Pietschnig B, Wittmann KJ, Lischka A, Salzer H, Hohenauer L, et al. Lead and mercury in breast Milk. Pediatrics. 2002;110(5):873–8.

    Article  Google Scholar 

  87. Iwai-Shimada M, Satoh H, Nakai K, Tatsuta N, Murata K, Akagi H. Methylmercury in the breast milk of Japanese mothers and lactational exposure of their infants. Chemosphere. 2015;126:67–72.

    Article  CAS  Google Scholar 

  88. Kosanovic M, Adem A, Jokanovic M, Abdulrazzaq YM. Simultaneous determination of cadmium, mercury, Lead, arsenic, copper, and zinc in human breast Milk by ICP-MS/microwave digestion. Anal Lett. 2008;41(3):406–16.

    Article  CAS  Google Scholar 

  89. Chien LC, Han BC, Hsu CS, Jiang CB, You HJ, Shieh MJ, et al. Analysis of the health risk of exposure to breast milk mercury in infants in Taiwan. Chemosphere. 2006;64(1):79–85.

    Article  CAS  Google Scholar 

  90. Yurdakök K. Lead, mercury, and cadmium in breast milk. Journal of Pediatric and Neonatal Individualized Medicine (JPNIM). 2015;4(2):e040223.

    Google Scholar 

  91. Wilhelm M, Müller F, Idel H. Biological monitoring of mercury vapour exposure by scalp hair analysis in comparison to blood and urine. Toxicol Lett. 1996;88(1):221–6.

    Article  CAS  Google Scholar 

  92. Al-Saleh I, Al-Doush I. Mercury content in skin-lightening creams and potential hazards to the health of Saudi women. J Toxicol Environ Health. 1997;51(2):123–30.

    Article  CAS  Google Scholar 

  93. Engler DE. Mercury "bleaching" creams. J Am Acad Dermatol. 2005;52(6):1113–4.

    Article  Google Scholar 

  94. Borošová D, Slotová K, Fabiánová E. Mercury content in hairs of mother-child pairs in Slovakia as a biomarker of environmental exposure. Acta Chimica Slovaca. 2014;7(2):119–22.

    Article  CAS  Google Scholar 

  95. Schwedler G, Seiwert M, Fiddicke U, Ißleb S, Hölzer J, Nendza J, et al. Human biomonitoring pilot study DEMOCOPHES in Germany: contribution to a harmonized European approach. Int J Hyg Environ Health. 2017;220(4):686–96.

    Article  Google Scholar 

  96. Den Hond E, Govarts E, Willems H, Smolders R, Casteleyn L, Kolossa-Gehring M, et al. First steps toward harmonized human biomonitoring in Europe: demonstration project to perform human biomonitoring on a European scale. Environ Health Perspect. 2015 Mar;\(3):255–263. Pubmed Central PMCID: PMC4348748. eng.

  97. Miklavčič A, Cuderman P, Mazej D, Snoj Tratnik J, Krsnik M, Planinšek P, et al. Biomarkers of low-level mercury exposure through fish consumption in pregnant and lactating Slovenian women. Environ Res. 2011;111(8):1201–7.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors want to thank authorities of Iran University of Medical Sciences for their comprehensives support for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Esrafili.

Ethics declarations

Conflict of interest

The authors of this article declare that they have no conflict of interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmoudi, N., Jonidi Jafari, A., Moradi, Y. et al. The mercury level in hair and breast milk of lactating mothers in Iran: a systematic review and meta-analysis. J Environ Health Sci Engineer 18, 355–366 (2020). https://doi.org/10.1007/s40201-020-00460-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40201-020-00460-5

Keywords

Navigation