Skip to main content

Advertisement

Log in

Photochemical degradation of toluene in gas-phase under UV/visible light graphene oxide-TiO2 nanocomposite: influential operating factors, optimization, and modeling

  • Research article
  • Published:
Journal of Environmental Health Science and Engineering Aims and scope Submit manuscript

Abstract

The current study aimed to investigate the removal efficiency of toluene using synthesized titanium dioxide-graphene oxide composites under visible light and UV irradiation. The characterization of synthesized composites was examined by field emission scanning electron microscope equipped with energy dispersive, X-ray diffraction and fourier transforms infrared. In order to find the optimum of the main experimental parameters affecting the removal efficiency of toluene including the length of the reactor, initial concentration, and flow rates, central composite design together with response surface methodology with R software was used. The initial concentration of toluene in the inlet of the reactor as well as its concentration in the outlet was measured using gas chromatography with the flame ionization detector. Analysis of variance results for the quadratic model showed that the highly significant and simple linear regression was established as a predicting model. Multiple and adjusted R2 were 0.965 and 0.974 for UV irradiation GO-TiO2 model and 0.951 and 0.959 for visible light GO-TiO2 model, respectively. As such, the differences less than 0.2 between multiple and adjusted R2 in two models indicate that two examined models were fitted well. The highest removal efficiency of toluene using UV irradiation GO-TiO2 and visible light GO-TiO2 was obtained at optimum condition; length of reactor 40 cm, initial concentration of 0.1 ppm, and flow rate equal to 1 l min−1, with 97.7 and 77.2%, respectively. The results indicated that the removal efficiency of toluene increased considerably with rising the length of the reactor, decreasing flow rates, and initial concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Abou Rafee SA, Martins LD, Kawashima AB, Almeida DS, Morais MV, Souza RV, et al. Contributions of mobile, stationary and biogenic sources to air pollution in the Amazon rainforest: a numerical study with the WRF-Chem model. Atmos Chem Phys. 2017;17(12):7977–95.

    Article  CAS  Google Scholar 

  2. Altemose B, Robson MG, Kipen HM, Strickland PO, Meng Q, Gong J, et al. Association of air pollution sources and aldehydes with biomarkers of blood coagulation, pulmonary inflammation, and systemic oxidative stress. Journal of Exposure Science and Environmental Epidemiology. 2017;27(3):244–50.

    Article  CAS  Google Scholar 

  3. Brauer M, Freedman G, Frostad J, Van Donkelaar A, Martin RV, Dentener F, et al. Ambient air pollution exposure estimation for the global burden of disease 2013. Environmental science & technology. 2015;50(1):79–88.

    Article  CAS  Google Scholar 

  4. Baudic A, Gros V, Sauvage S, Locoge N, Sanchez O, Sarda-Estève R, et al. Seasonal variability and source apportionment of volatile organic compounds (VOCs) in the Paris megacity (France). Atmos Chem Phys. 2016;16(18):11961–89.

    Article  CAS  Google Scholar 

  5. Jiang Z, Grosselin B, Daële V, Mellouki A, Mu Y. Seasonal and diurnal variations of BTEX compounds in the semi-urban environment of Orleans, France. Sci Total Environ. 2017;574:1659–64.

    Article  CAS  Google Scholar 

  6. Miri M, Shendi MRA, Ghaffari HR, Aval HE, Ahmadi E, Taban E, et al. Investigation of outdoor BTEX: concentration, variations, sources, spatial distribution, and risk assessment. Chemosphere. 2016;163:601–9.

    Article  CAS  Google Scholar 

  7. Amini H, Hosseini V, Schindler C, Hassankhany H, Yunesian M, Henderson SB, et al. Spatiotemporal description of BTEX volatile organic compounds in a middle eastern megacity: Tehran study of exposure prediction for environmental Health Research (Tehran SEPEHR). Environ Pollut. 2017;226:219–29.

    Article  CAS  Google Scholar 

  8. Amini H, Schindler C, Hosseini V, Yunesian M, Künzli N. Land use regression models for Alkylbenzenes in a middle eastern megacity: Tehran study of exposure prediction for environmental Health Research (Tehran SEPEHR). Environmental Science & Technology. 2017;51(15):8481–90.

    Article  CAS  Google Scholar 

  9. Samarghandi MR, Babaee SA, Ahmadian M, Asgari G, Ghorbani Shahna F, Poormohammadi A. Performance catalytic ozonation over the carbosieve in the removal of toluene from waste air stream. Journal of research in health sciences. 2014;14(3):227–32.

    Google Scholar 

  10. Kanjanasiranont N, Prueksasit T, Morknoy D. Inhalation exposure and health risk levels to BTEX and carbonyl compounds of traffic policeman working in the inner city of Bangkok, Thailand. Atmos Environ. 2017;152:111–20.

    Article  CAS  Google Scholar 

  11. Amini H, Yunesian M, Hosseini V, Schindler C, Henderson SB. Künzli N. a systematic review of land use regression models for volatile organic compounds. Atmos Environ. 2017;171:1–16.

    Article  CAS  Google Scholar 

  12. Lim J-h, Song M-K, Cho Y, Kim W, Han SO, Ryu J-C. Comparative analysis of microRNA and mRNA expression profiles in cells and exosomes under toluene exposure. Toxicol in Vitro. 2017;41:92–101.

    Article  CAS  Google Scholar 

  13. Verma A, Jain R, Dhawan A, Lakshmy R. Evaluation of oxidative stress and toluene exposure among adolescent inhalant users at a tertiary care Centre of North India. Free Radic Biol Med. 2017;112:37.

    Article  Google Scholar 

  14. Cruz LP, Alve LP, Santos AV, Esteves MB, Gomes ÍV, Nunes LS. Assessment of BTEX concentrations in air ambient of gas stations using passive sampling and the health risks for workers. J Environ Prot. 2017;8(01):12–25.

    Article  CAS  Google Scholar 

  15. Dai H, Jing S, Wang H, Ma Y, Li L, Song W, et al. VOC characteristics and inhalation health risks in newly renovated residences in Shanghai, China. Sci Total Environ. 2017;577:73–83.

    Article  CAS  Google Scholar 

  16. Gaeta A, Cattani G, di Bucchianico ADM, De Santis A, Cesaroni G, Badaloni C, et al. Development of nitrogen dioxide and volatile organic compounds land use regression models to estimate air pollution exposure near an Italian airport. Atmos Environ. 2016;131:254–62.

    Article  CAS  Google Scholar 

  17. Liu Z, Li N, Wang N. Characterization and source identification of ambient VOCs in Jinan, China. Air Quality, Atmosphere & Health. 2016;9(3):285–91.

    Article  CAS  Google Scholar 

  18. Dehghani M, Fazlzadeh M, Sorooshian A, Tabatabaee HR, Miri M, Baghani AN, et al. Characteristics and health effects of BTEX in a hot spot for urban pollution. Ecotoxicol Environ Saf. 2018;155:133–43.

    Article  CAS  Google Scholar 

  19. Hazrati S, Rostami R, Fazlzadeh M. BTEX in indoor air of waterpipe cafés: levels and factors influencing their concentrations. Sci Total Environ. 2015;524:347–53.

    Article  CAS  Google Scholar 

  20. de Castro BP, de Souza Machado G, Bauerfeldt GF, Fortes JDN, Martins EM. Assessment of the BTEX concentrations and reactivity in a confined parking area in Rio de Janeiro, Brazil. Atmos Environ. 2015;104:22–6.

    Article  CAS  Google Scholar 

  21. Masih A, Lall AS, Taneja A, Singhvi R. Inhalation exposure and related health risks of BTEX in ambient air at different microenvironments of a terai zone in North India. Atmos Environ. 2016;147:55–66.

    Article  CAS  Google Scholar 

  22. Masih A, Lall AS, Taneja A, Singhvi R. Exposure profiles, seasonal variation and health risk assessment of BTEX in indoor air of homes at different microenvironments of a terai province of northern India. Chemosphere. 2017;176:8–17.

    Article  CAS  Google Scholar 

  23. Buczynska AJ, Krata A, Stranger M, Godoi AFL, Kontozova-Deutsch V, Bencs L, et al. Atmospheric BTEX-concentrations in an area with intensive street traffic. Atmos Environ. 2009;43(2):311–8.

    Article  CAS  Google Scholar 

  24. Miller L, Xu X, Wheeler A, Zhang T, Hamadani M, Ejaz U. Evaluation of missing value methods for predicting ambient BTEX concentrations in two neighbouring cities in southwestern Ontario Canada. Atmos Environ. 2018;181:126–34.

    Article  CAS  Google Scholar 

  25. Kamal MS, Razzak SA, Hossain MM. Catalytic oxidation of volatile organic compounds (VOCs)–a review. Atmos Environ. 2016;140:117–34.

    Article  CAS  Google Scholar 

  26. Hosseini M, Haghighi M, Margan P, Ajamein H. Comparative sonochemically synthesis of CeO2-doped Pd/clinoptilolite and Pd/Al2O3 nanocatalysts used in total oxidation of toluene at low temperatures for polluted air treatment. Process Saf Environ Prot. 2017;106:309–18.

    Article  CAS  Google Scholar 

  27. Martinez T, Bertron A, Escadeillas G, Ringot E, Simon V. BTEX abatement by photocatalytic TiO2-bearing coatings applied to cement mortars. Build Environ. 2014;71:186–92.

    Article  Google Scholar 

  28. Quici N, Vera ML, Choi H, Puma GL, Dionysiou DD, Litter MI, et al. Effect of key parameters on the photocatalytic oxidation of toluene at low concentrations in air under 254+ 185 nm UV irradiation. Appl Catal B Environ. 2010;95(3–4):312–9.

    Article  CAS  Google Scholar 

  29. Binas V, Venieri D, Kotzias D, Kiriakidis G. Modified TiO2 based photocatalysts for improved air and health quality. J Mater. 2017;3(1):3–16.

    Google Scholar 

  30. Ren H, Koshy P, Chen W-F, Qi S, Sorrell CC. Photocatalytic materials and technologies for air purification. J Hazard Mater. 2017;325:340–66.

    Article  CAS  Google Scholar 

  31. Mamaghani AH, Haghighat F, Lee C-S. Photocatalytic oxidation technology for indoor environment air purification: the state-of-the-art. Appl Catal B Environ. 2017;203:247–69.

    Article  CAS  Google Scholar 

  32. Jo W-K. Coupling of graphene oxide into titania for purification of gaseous toluene under different operational conditions. Vacuum. 2014;99:22–5.

    Article  CAS  Google Scholar 

  33. Nguyen-Phan T-D, Pham VH, Shin EW, Pham H-D, Kim S, Chung JS, et al. The role of graphene oxide content on the adsorption-enhanced photocatalysis of titanium dioxide/graphene oxide composites. Chem Eng J. 2011;170(1):226–32.

    Article  CAS  Google Scholar 

  34. Liu R, Guo W, Sun B, Pang J, Pei M, Zhou G. Composites of rutile TiO2 nanorods loaded on graphene oxide nanosheet with enhanced electrochemical performance. Electrochim Acta. 2015;156:274–82.

    Article  CAS  Google Scholar 

  35. Jo W-K, Kang H-J. Titanium dioxide–graphene oxide composites with different ratios supported by Pyrex tube for photocatalysis of toxic aromatic vapors. Powder Technol. 2013;250:115–21.

    Article  CAS  Google Scholar 

  36. Dutka M, Ditaranto M, Løvås T. Application of a central composite design for the study of NOx emission performance of a low NOx burner. Energies. 2015;8(5):3606–27.

    Article  CAS  Google Scholar 

  37. Amiri H, Nabizadeh R, Martinez SS, Shahtaheri SJ, Yaghmaeian K, Badiei A, et al. Response surface methodology modeling to improve degradation of Chlorpyrifos in agriculture runoff using TiO 2 solar photocatalytic in a raceway pond reactor. Ecotoxicol Environ Saf. 2018;147:919–25.

    Article  CAS  Google Scholar 

  38. Hummers WS Jr, Offeman RE. Preparation of graphitic oxide. J Am Chem Soc. 1958;80(6):1339.

    Article  CAS  Google Scholar 

  39. Karimaei M, Nabizadeh R, Shokri B, Khani MR, Yaghmaeian K, Mesdaghinia A, et al. Dielectric barrier discharge plasma as excellent method for Perchloroethylene removal from aqueous environments: degradation kinetic and parameters modeling. J Mol Liq. 2017;248:177–83.40.

    Article  CAS  Google Scholar 

  40. Ghanbarian M, Nabizadeh R, Nasseri S, Shemirani F, Mahvi AH, Beyki MH, et al. Potential of amino-riched nano-structured MnFe2O4@ cellulose for biosorption of toxic Cr (VI): modeling, kinetic, equilibrium and comparing studies. Int J Biol Macromol. 2017;104:465–80.

    Article  CAS  Google Scholar 

  41. Yousefi N, Nabizadeh R, Nasseri S, Khoobi M, Nazmara S, Mahvi AH. Decolorization of direct blue 71 solutions using tannic acid/polysulfone thin film nanofiltration composite membrane; preparation, optimization and characterization of anti-fouling. Korean J Chem Eng. 2017;34(8):2342–53.

    Article  CAS  Google Scholar 

  42. Khazaei M, Nasseri S, Ganjali MR, Khoobi M, Nabizadeh R, Mahvi AH, et al. Response surface modeling of lead (׀׀) removal by graphene oxide-Fe 3 O 4 nanocomposite using central composite design. J Environ Health Sci Eng. 2016;14(1):2.

    Article  CAS  Google Scholar 

  43. Wang J, Wang Y, Zhu J, Zhang Y, Liu J, Van der Bruggen B. Construction of TiO2@ graphene oxide incorporated antifouling nanofiltration membrane with elevated filtration performance. J Membr Sci. 2017;533:279–88.

    Article  CAS  Google Scholar 

  44. Lin L, Chai Y, Zhao B, Wei W, He D, He B, et al. Photocatalytic oxidation for degradation of VOCs. Open Journal of Inorganic Chemistry. 2013;3(01):14–25.

    Article  CAS  Google Scholar 

  45. Roso M, Boaretti C, Pelizzo MG, Lauria A, Modesti M, Lorenzetti A. Nanostructured photocatalysts based on different oxidized graphenes for VOCs removal. Ind Eng Chem Res. 2017;56(36):9980–92.

  46. Shayegan Z, Lee C-S, Haghighat F. TiO 2 photocatalyst for removal of volatile organic compounds in gas phase–a review. Chem Eng J. 2017.

  47. Jafari AJ, Kalantary RR, Esrafili A, Arfaeinia H. Synthesis of silica-functionalized graphene oxide/ZnO coated on fiberglass and its application in photocatalytic removal of gaseous benzene. Process Saf Environ Prot. 2018;116:377–87.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was conducted as a Ph.D. student thesis of Faramarz Azimi. The authors are grateful to the Institute for Environmental Research (IER) of Tehran University of Medical Sciences for financially and technically supporting this research (Grant No. 96-02-46-36249).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazem Naddafi.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azimi, F., Nabizadeh, R., Hassanvand, M.S. et al. Photochemical degradation of toluene in gas-phase under UV/visible light graphene oxide-TiO2 nanocomposite: influential operating factors, optimization, and modeling. J Environ Health Sci Engineer 17, 671–683 (2019). https://doi.org/10.1007/s40201-019-00382-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40201-019-00382-x

Keywords

Navigation