Elwood JM. Epidemiological studies of radio frequency exposures and human cancer. Bioelectromagnetics. 2003;24(S6):63–73.
Article
Google Scholar
Sharma VP, Singh HP, Kohli RK, Batish DR. Mobile phone radiation inhibits Vigna radiata (mung bean) root growth by inducing oxidative stress. Sci Total Environ. 2009;407(21):5543–7.
CAS
Article
Google Scholar
ITU (International Telecommunication Union). Global and Regional ICT Data. International Telecommunication Union. 2018. https://www.itu.int/en/ITU-D/Statistics/Documents/statistics/2017/ITU_Key_2005-2017_ICT_data.xls. 2018. Accessed 15 July 2018.
Belyaev IY, Hillert L, Protopopova M, Tamm C, Malmgren LO, Persson BR, et al. 915 MHz microwaves and 50 Hz magnetic field affect chromatin conformation and 53BP1 foci in human lymphocytes from hypersensitive and healthy persons. Bioelectromagnetics. 2005;26(3):173–84.
CAS
Article
Google Scholar
Hardell L, Carlberg M. Mobile phones, cordless phones and the risk for brain tumours. Int J Oncol. 2009;35(1):5–17.
Article
Google Scholar
Sepehrimanesh M, Azarpira N, Saeb M, Nazifi S, Kazemipour N, Koohi O. Pathological changes associated with experimental 900-MHz electromagnetic wave exposure in rats. Comp Clin Path. 2014;23(5):1629–31.
CAS
Article
Google Scholar
Vácha M, Půžová T, Kvíćalová M. Radio frequency magnetic fields disrupt magnetoreception in American cockroach. J Exp Biol. 2009;212(21):3473–7.
Article
Google Scholar
Sharma VP, Singh HP, Batish DR, Kohli RK. Cell phone radiations affect early growth of Vigna radiata (mung bean) through biochemical alterations. Z Naturforsch. 2010;65(1–2):66–72.
CAS
Article
Google Scholar
IARC (International Agency for Research on Cancer). Press release no. 208. IARC classifies radiofrequency electromagnetic fields as possibly carcinogenic to humans. IARC, France. 2018. http://www.iarc.fr/en/media-centre/pr/2011/pdfs/pr208_E.pdf. 2011. Accessed 15 July 2018.
Singh HP, Sharma VP, Batish DR, Kohli RK. Cell phone electromagnetic field radiations affect rhizogenesis through impairment of biochemical processes. Environ Monit Assess. 2012;184(4):1813–21.
CAS
Article
Google Scholar
Tkalec M, Malarić K, Pavlica M, Pevalek-Kozlina B, Vidaković-Cifrek Ž. Effects of radiofrequency electromagnetic fields on seed germination and root meristematic cells of Allium cepa L. Mutat Res. 2009;672(2):76–81.
CAS
Article
Google Scholar
Tambiev AK, Kirikova NN. Effect of EHF radiation on metabolism of cyanobacteria Spirulina platensis and other photosynthesizing organisms. Crit Rev Biomed Eng. 2000;28(3&4):589–602.
CAS
Article
Google Scholar
Atak Ç, Emiroǧlu Ö, Alikamanoǧlu S, Rzakoulieva A. Stimulation of regeneration by magnetic field in soybean (Glycine max L. Merrill) tissue cultures. J Cell Mol Biol. 2003;2(2):113–9.
Google Scholar
Challis LJ. Mechanisms for interaction between RF fields and biological tissue. Bioelectromagnetics. 2005;26:S98–106.
Article
CAS
Google Scholar
Kivrak EG, Yurt KK, Kaplan AA, Alkan I, Altun G. Effects of electromagnetic fields exposure on the antioxidant defense system. J Microsc Ultrastruct. 2017;5:167–76.
Article
Google Scholar
Culkin KA, Fung DY. Destruction of Escherichia coli and Salmonella typhimurium in microwave-cooked soups. J Milk Food Technol. 1975;38(1):8–15.
Article
Google Scholar
Singh SP, Rai S, Rai AK, Tiwari SP, Singh SS, Abraham J. Athermal physiological effects of microwaves on a cynobacterium Nostoc muscorum: evidence for EM-memory bits in water. Med Biol Eng Comp. 1994;32(2):175–80.
CAS
Article
Google Scholar
Ivancsits S, Diem E, Pilger A, Rüdiger HW, Jahn O. Induction of DNA strand breaks by intermittent exposure to extremely-low-frequency electromagnetic fields in human diploid fibroblasts. Mutat Res. 2002;519(1):1–3.
CAS
Google Scholar
Diem E, Schwarz C, Adlkofer F, Jahn O, Rüdiger H. Non-thermal DNA breakage by mobile-phone radiation (1800 MHz) in human fibroblasts and in transformed GFSH-R17 rat granulosa cells in vitro. Mutat Res. 2005;583(2):178–83.
CAS
Article
Google Scholar
Franzellitti S, Valbonesi P, Ciancaglini N, Biondi C, Contin A, Bersani F, et al. Transient DNA damage induced by high-frequency electromagnetic fields (GSM 1.8 GHz) in the human trophoblast HTR-8/SVneo cell line evaluated with the alkaline comet assay. Mutat Res. 2010;683(1):35–42.
CAS
Article
Google Scholar
Pesnya DS, Romanovsky AV. Comparison of cytotoxic and genotoxic effects of plutonium-239 alpha particles and mobile phone GSM 900 radiation in the Allium cepa test. Mutat Res. 2013;750:27–33.
CAS
Article
Google Scholar
Kumar A, Singh HP, Batish DR, Kaur S. Kohli RK. EMF radiations (1800 MHz)-inhibited early seedling growth of maize (Zea mays) involves alterations in starch and sucrose metabolism. Protoplasma. 2016;253(4):1043–9.
CAS
Article
Google Scholar
Çenesiz M, Atakişi O, Akar A, Önbilgin G, Ormanc N. Effects of 900 and 1800 MHz electromagnetic field application on electrocardiogram, nitric oxide, total antioxidant capacity, total oxidant capacity, total protein, albumin and globulin levels in Guinea pigs. Kafkas Univ Vet Fak Derg. 2011;17:357–62.
Google Scholar
Andreuccetti D, Fossi R, Petrucci C. An Internet resource for the calculation of the dielectric properties of body tissues in the frequency range 10 Hz-100 GHz. IFAC-CNR, Florence (Italy). 1997. http://niremf.ifac.cnr.it/tissprop/. Accessed 10 June 2018.
Armbruster BL, Molin WT, Bugg MW. Effects of the herbicide dithiopyr on cell division in wheat root tips. Pest Biochem Physiol. 1991;39(2):110–20.
CAS
Article
Google Scholar
Tice RR, Agurell E, Anderson D, Burlinson B, Hartmann A, Kobayashi H, et al. Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mutagen. 2000;35(3):206–21.
CAS
Article
Google Scholar
Lai H, Singh NP. Melatonin and N-tert-butyl-α-phenylnitrone block 60-Hz magnetic field-induced DNA single and double strand breaks in rat brain cells. J Pineal Res. 1997;22(3):152–62.
CAS
Article
Google Scholar
Wu RY, Chiang H, Shao BJ, Li NG. Fu YD. effects of 2.45-GHz microwave radiation and phorbol ester 12-O-tetradecanoylphorbol-13-acetate on dimethylhydrazine-induced colon cancer in mice. Bioelectromagnetics. 1994;15(6):531–8.
CAS
Article
Google Scholar
Răcuciu MI, Miclăuş SI. Low-level 900 MHz electromagnetic field influence on vegetal tissue. Rom J Biophys. 2007;17(3):149–56.
Google Scholar
Pesnya DS, Romanovsky AV. Comparison of cytotoxic and genotoxic effects of plutonium-239 alpha particles and mobile phone GSM 900 radiation in the Allium cepa test. Mutat Res. 2013;750(1):27–33.
CAS
Article
Google Scholar
Răcuciu M, Iftode C, Miclaus S. Influence of 1 GHz radiation at low specific absorption rate of energy deposition on plant mitotic division process. Int J Environ Sci Technol. 2018;15:1233–42.
Article
CAS
Google Scholar
Velizarov S, Raskmark P, Kwee S. The effects of radiofrequency fields on cell proliferation are non-thermal. Bioelectrochem Bioenerg. 1999;48(1):177–80.
CAS
Article
Google Scholar
Pacini S, Ruggiero M, Sardi I, Aterini S, Gulisano F, Gulisano M. Exposure to global system for mobile communication (GSM) cellular phone radiofrequency alters gene expression, proliferation, and morphology of human skin fibroblasts. Oncol Res. 2002;13(1):19–24.
Article
Google Scholar
Choudhary S, Ansari MY, Khan Z, Gupta H. Cytotoxic action of lead nitrate on cytomorphology of Trigonella foenum-graecum L. Turk J Biol. 2012;36(3):267–73.
CAS
Google Scholar
Kumar G, Rai PK. EMS induced karyomorphological variations in maize (Zea mays L.) inbreds. Turk J Biol. 2007;31(4):187–95.
CAS
Google Scholar
Gustavino B, Carboni G, Petrillo R, Paoluzzi G, Santovetti E, Rizzoni M. Exposure to 915 MHz radiation induces micronuclei in Vicia faba root tips. Mutagenesis. 2015;31(2):187–92.
Article
CAS
Google Scholar
Dash S, Panda KK, Panda BB. Biomonitoring of low levels of mercurial derivatives in water and soil by Allium micronucleus assay. Mutat Res. 1988;203(1):11–21.
CAS
Article
Google Scholar
Mihai CT, Rotinberg P, Brinza F, Vochita G. Extremely low-frequency electromagnetic fields cause DNA strand breaks in normal cells. J Environ Health Sci Eng. 2014;12(1):15.
Article
CAS
Google Scholar
Phillips JL, Ivaschuk O, Ishida-Jones T, Jones RA, Campbell-Beachler M. Haggren W. DNA damage in Molt-4 T-lymphoblastoid cells exposed to cellular telephone radiofrequency fields in vitro. Bioelectrochem Bioenerg. 1998;45(1):103–10.
CAS
Article
Google Scholar
Ahuja YR, Vijayashree B, Saran R, Jayashri EL, Manoranjani JK, Bhargava SC. In vitro effects of low-level, low-frequency electromagnetic fields on DNA damage in human leucocytes by comet assay. Indian J Biochem Biophys. 1999;36(5):318–22.
CAS
Google Scholar
Ivancsits S, Diem E, Jahn O, Rüdiger HW. Intermittent extremely low frequency electromagnetic fields cause DNA damage in a dose-dependent way. Int Arch Occup Environ Health. 2003;76(6):431–6.
CAS
Article
Google Scholar
Lixia S, Yao K, Kaijun W, Deqiang L, Huajun H, Xiangwei G, et al. Effects of 1.8 GHz radiofrequency field on DNA damage and expression of heat shock protein 70 in human lens epithelial cells. Mutat Res. 2006;602(1):135–42.
Article
CAS
Google Scholar
Verschaeve L, Slaets D, Van Gorp U, Maes A, Vanderkom J. In vitro and in vivo genetic effects of microwaves from mobile phone frequencies in human and rat peripheral blood lymphocytes. In: Simunic D, editor. Proceedings of cost 244 meetings on Mobile communication and extremely low frequency field: instrumentation and measurements in bioelectromagnetics research; 1994. p. 74–83.
Google Scholar
Çam ST, Seyhan N. Single-strand DNA breaks in human hair root cells exposed to mobile phone radiation. Int J Radiat Biol. 2012;88(5):420–4.
Article
CAS
Google Scholar
Hekmat A, Saboury AA, Moosavi-Movahedi AA. The toxic effects of mobile phone radiofrequency (940 MHz) on the structure of calf thymus DNA. Ecotoxicol Environ Saf. 2013;88:35–41.
CAS
Article
Google Scholar
Blank M, Goodman R. DNA is a fractal antenna in electromagnetic fields. Int J Radiat Biol. 2011;87(4):409–15.
CAS
Article
Google Scholar
Tkalec M, Malarić K, Pevalek-Kozlina B. Exposure to radiofrequency radiation induces oxidative stress in duckweed Lemna minor L. Sci Total Environ. 2007;388(1–3):78–89.
CAS
Article
Google Scholar
De Iuliis GN, Newey RJ, King BV, Aitken RJ. Mobile phone radiation induces reactive oxygen species production and DNA damage in human spermatozoa in vitro. PLoS One. 2009;4(7):e6446.
Article
CAS
Google Scholar
Sykes PJ, McCallum BD, Bangay MJ, Hooker AM, Morley AA. Effect of exposure to 900 MHz radiofrequency radiation on intrachromosomal recombination in pKZ1 mice. Radiat Res. 2001;156(5):495–502.
CAS
Article
Google Scholar